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INTRODUCTION 

Panel radiators are finned natural convective heat exchangers. General view of the device and fin 

profile is shown in the figures. Water flows inside chanels and outside air is heated up through finned 

and bare surfaces of heat exchanger. In order to simulate heat transfer mechanism in the radiator 

natural convection finite difference model is considered. 

 
 

 

A finned heat exchanger: panel radiator 

 

 

EQUATION OF STATES 

In order to simulate the heat exchanger, equation of states and thermophysical properties such as 

viscosity, thermal convectivity is required. In radiator, watr flows inside channels, and air rise from 



outside through fins and panel through natuaral convective and radiative heating. For that purpaselet 

us investigate and model these properties as thefirst step tothe simulation process. 

Air as a perfect gas 

If an equation of state is given then all thermodynamic properties can be calculated by Consider an 

equation of state in the form of P(T,V) 
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is used, equation becomes 
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u equation of state 1.14 rewritten as  𝑑𝑢 = 𝑇𝑑𝑠 − 𝑃𝑑𝑣 and above equation is substituted for ds 
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integration of the equation gives 
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Ideal gas equation of state:  
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Where R=8.3145 kJ/(kmolK) is gas constant 
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In order to create perfect gas thermodynamic properties of air, The first step is look Specific heat data 

for air the standart air mixture 

Nitrogen N2 7.808400E+01 0.781121204 

Oxygen O2 2.094600E+01 0.209535433 

Argon Ar 9.340000E-01 0.009343364 

Carbondioxide CO2 3.970000E-02 
 

Neon Ne 1.818000E-03 
 

Helium He 5.240000E-04 
 

Methane CH4 1.790000E-04 
 

Water vapor H2O 0.00001-0.05 
 

  9.996400E+01 1 
If it is assumed that Air is made of only N2, O2 and Ar, it will be changed to: 

Name Formula   % vol M 

Nitrogen N2 78.084 0.781121204 28.014 

Oxygen O2 20.946 0.209535433 31.998 

Argon Ar 0.934 0.009343364 39.948 

Air     1 28.96029 

 

By finding specific heat data, we can able to establish the perfect gas equation of state. We will use 

Janaf tables from NIST (National Institute of Standards and Technology  Janaf.nist.gov) to obtain 

specific heat data. After obtaining Specific heat data for Nitrogen, Oxygen and Argonne, Specific heat 

data for air is obtained by using ideal gas mixing rules. After the airspecific heat data is obtainedCubic 

spline interpolation will be applied to model air properties. 

If a third degree polinomial is considered: 

𝑟𝑘(𝑥) = 𝑎𝑘(𝑥 − 𝑥𝑘)
3 + 𝑏𝑘(𝑥 − 𝑥𝑘)

2 + 𝑐(𝑥 − 𝑥𝑘)
3 + 𝑦𝑘      1 ≤ 𝑘 ≤ 𝑛     (2.1.18) 

In the interpolation proses polinoms should be passing through all data points 

𝑟𝑘(𝑥𝑘+1) = 𝑦𝑘+1   1 ≤ 𝑘 ≤ 𝑛     (2.1.19) 
In the same time the first derivative of the polynomial should also be continious while passing from 

one polynomial to the next one at the data point 

𝑟′𝑘−1(𝑥𝑘) = 𝑟′𝑘(𝑥𝑘)     1 ≤ 𝑘 ≤ 𝑛     (2.1.20) 

For the  third degree polinomial second derivative of the polynomial should also be continious while 

passing from one polynomial to the next one at the data point 

𝑟"𝑘−1(𝑥𝑘) = 𝑟"𝑘(𝑥𝑘)     1 ≤ 𝑘 ≤ 𝑛     (2.1.21) 
All these conditions are not enough to solve the coefficients of the polinomials. Two more conditions 

are required. This two additional conditions (A and B of the following equation) can be given by user 

𝑟"1(𝑥1) = 𝐴         𝑟"𝑛−1(𝑥𝑛) = 𝐵   (2.1.22) 



They are the second derivatives at the both hand of the series of polinomials. If A and B values are 

taken equals to 0, it is called a natural cubic spline. Other end conditions such as the ones depends 

one the first derivatives can also be set to solve the system of equations. 

Defining ℎ𝑘 = 𝑥𝑘+1 − 𝑥𝑘     1 ≤ 𝑘 ≤ 𝑛     (2.1.23) 
System of equations become: 

𝑎𝑘ℎ𝑘
3 + 𝑏𝑘ℎ𝑘

2 + 𝑏𝑘ℎ𝑘 = 𝑦𝑘+1 − 𝑦𝑘  1 ≤ 𝑘 ≤ 𝑛     (2.1.24) 

3𝑎𝑘−1ℎ𝑘−1
2 + 2𝑏𝑘−1ℎ𝑘−1 + 𝑐𝑘−1−𝑐𝑘 = 0  

6𝑎𝑘−1ℎ𝑘−1
 + 2𝑏𝑘−1  + 2𝑏𝑘 = 0  

3𝑏0 = 0  

6𝑎𝑛−1ℎ𝑛−1
 + 2𝑏𝑛−1  = 0  

  

This set contains 3n-3 equations. This could  a considerable load to the system of equation solving 

programs. To make calculation load simpler a special third degree polinomial can be considered. If our 

cubic polinomial is in the form of:  

𝑠𝑘(𝑥) = 𝑎𝑘(𝑥 − 𝑥𝑘) + 𝑏𝑘(𝑥𝑘+1 − 𝑥) + [(𝑥 − 𝑥𝑘)
3𝑐𝑘+1 + (𝑥𝑘+1 − 𝑥)

3𝑐𝑘] /(6ℎ𝑘)    1 ≤ 𝑘 ≤ 𝑛    (2.1.25) 
then derivative equations becomes 

𝑠′𝑘(𝑥) = 𝑎𝑘 − 𝑏𝑘 + [(𝑥 − 𝑥𝑘)
2𝑐𝑘+1 − (𝑥𝑘+1 − 𝑥)

2𝑐𝑘] /ℎ𝑘   1 ≤ 𝑘 ≤ 𝑛      (2.1.26) 

𝑠"𝑘(𝑥) = [(𝑥 − 𝑥𝑘)𝑐𝑘+1 − (𝑥𝑘+1 − 𝑥)𝑐𝑘] /ℎ𝑘                            1 ≤ 𝑘 ≤ 𝑛  

ak ve bk  coefficients can be expressed as a function of ck 

𝑏𝑘 =
[6𝑦𝑘 − ℎ𝑘𝑐𝑘]

6ℎ𝑘
        1 ≤ 𝑘 ≤ 𝑛       (2.1.27) 

𝑎𝑘 =
[6𝑦𝑘+1 − ℎ𝑘

2𝑐𝑘+1]

6ℎ𝑘
        1 ≤ 𝑘 ≤ 𝑛       (2.1.28) 

In this case only ck terms left in the system of equations to be solved. 

ℎ𝑘−1𝑐𝑘−1 + 2(ℎ𝑘−1 − ℎ𝑘)𝑐𝑘−1 + ℎ𝑘𝑐𝑘+1𝑐𝑘+1 = 6 [
𝑦𝑘+1 − 𝑦𝑘

ℎ𝑘
−
𝑦𝑘 − 𝑦𝑘−1

ℎ𝑘−1
]        1 ≤ 𝑘 ≤ 𝑛       (2.1.29)       

This system of equation has only n-2 terms to be solved. By making definition  

𝑤𝑘 =
𝑦𝑘+1−𝑦𝑘

ℎ𝑘
,      1  k   n  (2.1.31) 

System of equation becomes 

[
 
 
 
 
 
 
1   
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⋯ ⋯ ⋯
   
   

⋯               ⋯ ⋯
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𝑐2
⋯
𝑐𝑛−2
𝑐𝑛−1
𝑐𝑛 }

  
 

  
 

=

{
  
 

  
 

𝐴
6(𝑤2 −𝑤1)
6(𝑤3 −𝑤2)

⋯
6(𝑤𝑛−2 −𝑤𝑛−3)

6(𝑤𝑛−1 −𝑤𝑛−2)
𝐵 }

  
 

  
 

 (2.1.30) 

 

Where A and B are the second derivative end conditions. A and B should be defined by user. Another 

important property of the above matrix is that it is a band matrix, therefore less amount of calculation 

is required to solve it (by using band matrix algorithms such as Thomas algorithm). 

Cubic spline method has two advantages, the first is very accurate represantion of data, and the second 

one is ability to directly integrate and derivate the spline function. 



 

Formulations of other thermophysical and thermodynamic properties 

In order to calculate thermopysical properties (thermal conductivity and viscosity) of dry air Kadoya et al[135] 

equations are used. This equations has the following form: 

η0(𝑇𝑟) = 𝐴0𝑇𝑟 +𝐴1𝑇𝑟
0.5 + 𝐴2 +

𝐴3

𝑇𝑟
+

𝐴4

𝑇𝑟
2 +

𝐴5

𝑇𝑟
3 +

𝐴6

𝑇𝑟
4    

∆η(𝜌𝑟) = ∑ 𝐵𝑖𝜌𝑟
𝑖4

𝑖=1   

η(𝑇𝑟 , 𝜌𝑟) = 𝐻[η0(𝑇𝑟) + Δη(𝜌𝑟)]  

𝑘0(𝑇𝑟) = 𝐶0𝑇𝑟 + 𝐶1𝑇𝑟
0.5 + 𝐶2 +

𝐶3

𝑇𝑟
+

𝐶4

𝑇𝑟
2 +

𝐶5

𝑇𝑟
3 +

𝐶

𝑇𝑟
4    

∆k(𝜌𝑟) = ∑ 𝐷𝑖𝜌𝑟
𝑖4

𝑖=1   

k(𝑇𝑟 , 𝜌𝑟) = Λ[𝑘0(𝑇𝑟) + ∆k(𝜌𝑟)]  

Where 𝜌𝑟 = 𝜌/𝜌
∗    𝑇𝑟 = 𝑇/𝑇

∗  

Coefficients of the equations are given in Table  

Table Coefficients of viscosity and thermal conductivity equations  

𝑇∗ = 132.5 K 𝜌∗ = 314.3 kg/m3 Λ = 25.9778 (10−3𝑊/(𝑚𝐾) H=6.1609 (10-6 Pas)  

i Ai Bi Ci Di 

0 0.128517 0.465601 0.239503 0.402287 

1 2.60661 1.26469 0.00649768 0.356603 

2 -1 -0.511425 1 -0.163159 

3 -0.709661 0.2746 -1.92615 0.138059 

4 0.662534  2.00383 -0.0201725 

5 -0.197846  -1.07553  

6 0.00770147  0.229414  
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Properties of steam (water) 

In recent years maximum operating temperatures and pressures of Rankine cycle power plants 

has increased. International Association for the Properties of Water and Steam(IAPWS) is 

developed a new set of equation of states which are more accurate and covers larger range of 

data. This new set of equations are developed in 1997[59]. Steam properties are given by 5 sets 

of equation of states, as shown in the Figure  

 
                                  Figure IAPWS 97 Equation of state regions for steam 

 

The first equation, which covers basically liquid region has the following gibbs free energy 

form: 

𝑔1(𝑃, 𝑇)

𝑅𝑇
= 𝛾(𝜋, 𝜏) =∑𝑛𝑖(71 − 𝜋)

𝐼𝑖

34

𝑖=1

(𝜏 − 1222)𝐽𝑖    

Where 𝜋 =
𝑃

𝑃∗
   𝜏 =

𝑇∗

𝑇
   p*=16.62 MPa and T*=1386 K   R=0461526 kJ/(kgK) 

Table 2.6.4 coefficients of eqn. 2.6.11 
i Ii Ji ni i Ii Ji ni 

1 0 -2 0.14632971213167 18 2 3 -4.4141845331E-06 

2 0 -1 -0.84548187169114 19 2 17 -7.2694996298E-16 



3 0 0 -3.75636036720400 20 3 -4 -3.1679644845E-05 

4 0 1 3.38551691683850 21 3 0 -2.8270797985E-06 

5 0 2 -0.95791963387872 22 3 6 -8.5205128120E-10 

6 0 3 0.15772038513228 23 4 -5 -2.2425281908E-06 

7 0 4 -0.01661641719950 24 4 -2 -6.5171222896E-07 

8 0 5 0.00081214629984 25 4 10 -1.4341729938E-13 

9 1 -9 0.00028319080124 26 5 -8 -4.0516996860E-07 

10 1 -7 -0.00060706301566 27 8 -11 -1.2734301742E-09 

11 1 -1 -0.01899006821842 28 8 -6 -1.7424871231E-10 

12 1 0 -0.03252974877051 29 21 -29 -6.8762131296E-19 

13 1 1 -0.02184171717541 30 23 -31 1.4478307829E-20 

14 1 3 -0.00005283835797 31 29 -38 2.6335781663E-23 

15 2 -3 -0.00047184321073 32 30 -39 -1.1947622640E-23 

16 2 0 -0.00030001780793 33 31 -40 1.8228094581E-24 

17 2 1 0.00004766139391 34 32 -41 -9.3537087292E-26 

 
Thermodynamic relations can be calculated from these thermodynamic relations 

Specific volume:  𝑣 = (
𝜕𝑔

𝜕𝑃
)
𝑇
 (2.6.12) 

Specific enthalpy: ℎ = 𝑔 − 𝑇 (
𝜕𝑔

𝜕𝑇
)
𝑃

  (2.6.13) 

Specific internal energy: 𝑢 = 𝑔 − 𝑇 (
𝜕𝑔

𝜕𝑇
)
𝑃
− 𝑃 (

𝜕𝑔

𝜕𝑃
)
𝑇
  (2.6.14) 

Specific entropy: 𝑠 = (
𝜕𝑔

𝜕𝑇
)
𝑃

 (2.6.15) 

Specific isobaric heat capacity: 𝐶𝑝 = (
𝜕ℎ

𝜕𝑇
)
𝑃

 (2.6.16) 

Specific isochoric heat capacity: 𝐶𝑣 = (
𝜕𝑢

𝜕𝑇
)
𝑣
 (2.6.17) 

The second equation equation, which covers vapor region has the following gibbs free energy 

form: 
𝑔2(𝑃,𝑇)

𝑅𝑇
= 𝛾(𝜋, 𝜏) = 𝛾0(𝜋, 𝜏) + 𝛾𝑟(𝜋, 𝜏)   (2.6.18) 

Where 𝜋 =
𝑃

𝑃∗
   𝜏 =

𝑇∗

𝑇
  R=0.461526 kJ/(kgK), 𝛾0(𝜋, 𝜏)is the ideal gas part of EOS, and 

𝛾𝑟(𝜋, 𝜏)is the real gas departure the EOS. İdeal gas part equation: 

𝛾0(𝜋, 𝜏) = ln(𝜋) +∑𝑛𝑖
0𝜏𝐽𝑖

9

𝑖=1

    (2.6.19) 

Where P*=1MPa and T*=540 K 

Table 2.6.5 coefficients of eqn. 2.6.19 
i Ji ni

0 i Ji ni
0 

1 0 -9.692768650E+00 6 -2 1.4240819171E+00 
2 1 1.008665597E+01 7 -1 -4.3839511319E+00 
3 -5 -5.608791128E-03 8 2 -2.8408632461E-01 
4 -4 7.145273808E-02 9 3 2.1268463753E-02 
5 -3 -4.071049822E-01       

 
dimensionless residual part of the basic equation g2( p,T ) is as follows: 

𝛾𝑟(𝜋, 𝜏) =∑𝑛𝑖𝜋
𝐼𝑖(𝜏 − 0.5)𝐽𝑖
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    (2.6.20) 

Where P*=1MPa and T*=540 K 

Table 2.6.6 coefficients of eqn. 2.6.20 
 i  Ii  Ji ni  i  Ii  Ji ni 

1 1 0     7 0 -5.9059564324270E-18 
2 1 1 -1.7834862292358E-02 24 7 11 -1.2621808899101E-06 
3 1 2 -4.5996013696365E-02 25 7 25 -3.8946842435739E-02 
4 1 3 -5.7581259083432E-02 26 8 8 1.1256211360459E-11 
5 1 6 -5.0325278727930E-02 27 8 36 -8.2311340897998E+00 
6 2 1 -3.3032641670203E-05 28 9 13 1.9809712802088E-08 
7 2 2 -1.8948987516315E-04 29 10 4 1.0406965210174E-19 
8 2 4 -3.9392777243355E-03 30 10 10 -1.0234747095929E-13 
9 2 7 -4.3797295650573E-02 31 10 14 -1.0018179379511E-09 



10 2 36 -2.6674547914087E-05 32 16 29 -8.0882908646985E-11 
11 3 0 2.0481737692309E-08 33 16 50 1.0693031879409E-01 
12 3 1 4.3870667284435E-07 34 18 57 -3.3662250574171E-01 
13 3 3 -3.2277677238570E-05 35 20 20 8.9185845355421E-25 
14 3 6 -1.5033924542148E-03 36 20 35 3.0629316876232E-13 
15 3 35 -4.0668253562649E-02 37 20 48 -4.2002467698208E-06 
16 4 1 -7.8847309559367E-10 38 21 21 -5.9056029685639E-26 
17 4 2 1.2790717852285E-08 39 22 53 3.7826947613457E-06 
18 4 3 4.8225372718507E-07 40 23 39 -1.2768608934681E-15 
19 5 7 2.2922076337661E-06 41 24 26 7.3087610595061E-29 
20 6 3 -1.6714766451061E-11 42 24 40 5.5414715350778E-17 
21 6 16 -2.1171472321355E-03 43 24 58 -9.4369707241210E-07 
22 6 35 -2.3895741934104E+01         

 

Region 3 equation is given as Helmholts free energy form: 

𝑓3(𝜌, 𝑇)

𝑅𝑇
= 𝜙(𝛿, 𝜏) = 𝑛1 ln(𝛿) +∑𝑛𝑖𝛿

𝐼𝑖𝜏𝐽𝑖
40
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   (2.6.21) 

Where 𝛿 =
𝜌

𝜌∗
   𝜏 =

𝑇∗

𝑇
 , T*=Tc=647.096 and  R=0461526 kJ/(kgK) 

Table 2.6.4 coefficients of eqn. 2.6.11 
 i  Ii  Ji ni  i  Ii  Ji ni 

1 0 0 1.065807002851E+00 21 3 4 -2.0189915023570E+00 
2 0 0 -1.573284529024E+01 22 3 16 -8.2147637173963E-03 
3 0 1 2.094439697431E+01 23 3 26 -4.7596035734923E-01 
4 0 2 -7.686770787872E+00 24 4 0 4.3984074473500E-02 
5 0 7 2.618594778795E+00 25 4 2 -4.4476435428739E-01 
6 0 10 -2.808078114862E+00 26 4 4 9.0572070719733E-01 
7 0 12 1.205336969652E+00 27 4 26 7.0522450087967E-01 
8 0 23 -8.456681281250E-03 28 5 1 1.0770512626332E-01 
9 1 2 -1.265431547771E+00 29 5 3 -3.2913623258954E-01 
10 1 6 -1.152440780668E+00 30 5 26 -5.0871062041158E-01 
11 1 15 8.852104398432E-01 31 6 0 -2.2175400873096E-02 
12 1 17 -6.420776518161E-01 32 6 2 9.4260751665092E-02 
13 2 0 3.849346018667E-01 33 6 26 1.6436278447961E-01 
14 2 2 -8.521470882421E-01 34 7 2 -1.3503372241348E-02 
15 2 6 4.897228154188E+00 35 8 26 -1.4834345352472E-02 
16 2 7 -3.050261725697E+00 36 9 2 5.7922953628084E-04 
17 2 22 3.942053687915E-02 37 9 26 3.2308904703711E-03 
18 2 26 1.255840842431E-01 38 10 0 8.0964802996215E-05 
19 3 0 -2.799932969871E-01 39 10 1 -1.6557679795037E-04 
20 3 2 1.389979956946E+00 40 11 26 -4.4923899061815E-05 

 

It should be noted that this set of equation is function of density and temperature, and basic equation is helmholts 

equation so, let us list definition of other thermodynamic properties 

Pressure: 𝑃 = 𝜌2 (
𝜕𝑓

𝜕𝜌
)
𝑇

  

Specific enthalpy: ℎ = 𝑓 − 𝑇 (
𝜕𝑓

𝜕𝑇
)
𝑝
+ 𝜌 (

𝜕𝑓

𝜕𝜌
)
𝑇

  

Specific internal energy: 𝑢 = 𝑓 − 𝑇 (
𝜕𝑓

𝜕𝑇
)
𝑝
  

Specific entropy: 𝑠 = (
𝜕𝑓

𝜕𝑇
)
𝜌

  

Specific isobaric heat capacity: 𝐶𝑝 = (
𝜕ℎ

𝜕𝑇
)
𝑝
  

 

Specific isochoric heat capacity: 𝐶𝑣 = (
𝜕𝑢

𝜕𝑇
)
𝑣
  

Region 4 of the equation defines saturation region. The basic equation is given as a polynomial 

𝛽2𝜗2 + 𝑛1𝛽
2𝜗 + 𝑛2𝛽

2 + 𝑛3𝛽𝜗
2 + 𝑛4𝛽𝜗 + 𝑛5𝛽 + 𝑛6𝜗

2 + 𝑛7𝜗 + 𝑛8 = 0   (2.6.18) 
Where 

𝛽 = (
𝑃𝑠

𝑃∗
)
0.25

     

𝜗 =
𝑇𝑠

𝑇∗
+

𝑛9

(
𝑇𝑠
𝑇∗
)−𝑛10

   

From this equation both saturation pressure and saturation temperature equation can be derived. 
𝑃𝑠

𝑃∗
= [

2𝐶

−𝐵+(𝐵2−4𝐴𝐶)0.5
]
4

  

Where P*=1 MPa 



𝐴 = 𝜗2 + 𝑛1𝜗 + 𝑛2  

𝐵 = 𝑛3𝜗
2 + 𝑛4𝜗 + 𝑛5  

𝐶 = 𝑛6𝜗
2 + 𝑛7𝜗 + 𝑛8  

Table coefficients of eqn 

i ni i ni 

1 1.1670521453E+03 6 1.4915108614E+01 

2 -7.2421316703E+05 7 -4.8232657362E+03 

3 -1.7073846940E+01 8 4.0511340542E+05 

4 1.2020824702E+04 9 -2.3855557568E-01 

5 -3.2325550322E+06 10 6.5017534845E+02 

It is also possible to drive saturation temperature equation from the basic polynomial as: 

𝑇𝑠

𝑇∗
=
𝑛10 + 𝐷 − [(𝑛10 + 𝐷)

2 − 4(𝑛9 + 𝑛10𝐷)]
0.5

2
   (2.6.22) 

Where T*=1 K 

𝐷 =
2𝐺

−𝐹 − (𝐹2 − 4𝐸𝐺)0.5
 

𝐸 = 𝛽2 + 𝑛3𝛽 + 𝑛6 

𝐹 = 𝑛1𝛽
2 + 𝑛4𝛽 + 𝑛7 

𝐺 = 𝑛2𝛽
2 + 𝑛5𝛽 + 𝑛8  

And the final region for steam is region 5, again given as gibbs free equation type EOS 
𝑔5(𝑃,𝑇)

𝑅𝑇
= 𝛾(𝜋, 𝜏) = 𝛾0(𝜋, 𝜏) + 𝛾𝑟(𝜋, 𝜏)  (2.6.23) 

Where 𝜋 =
𝑃

𝑃∗
   𝜏 =

𝑇∗

𝑇
    R=0.461526 kJ/(kgK), 𝛾0(𝜋, 𝜏)is the ideal gas part of EOS, and 

𝛾𝑟(𝜋, 𝜏)is the real gas difference of the EOS. İdeal gas part equation: 

𝛾0(𝜋, 𝜏) = ln(𝜋) + ∑ 𝑛𝑖
0𝜏𝐽𝑖9

𝑖=1   (2.6.24) 

Where p*=1MPa and T*=1000 K 

Table coefficients of eqn.  

 i  Ji
0  ni

0  i  Ji
0  ni

0 

1 0 -13.1799836742 4 -2 0.3690153498 

2 1 6.8540841634 5 -1 -3.1161318214 

3 -3 -0.0248051489 6 2 -0.3296162654 

The real gas part of the equation 

𝛾𝑟(𝜋, 𝜏) =∑𝑛𝑖𝜋
𝐼𝑖𝜏𝐽𝑖
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   (2.6.25) 

Table coefficients of eqn. 2.6.25 

i Ii Ji ni i Ii Ji ni 

1 1 1 1.5736404855E-03 4 2 3 2.2440037409E-06 

2 1 2 9.0153761674E-04 5 2 9 -4.1163275453E-06 

3 1 3 -5.0270077678E-03 6 3 7 3.7919454823E-08 

 

Formulations of other thermophysical and thermodynamic properties  

In order to calculate thermopysical properties (thermal conductivity and viscosity) of dry air Kadoya et al[135] 

equations are used. This equations has the following form: 

η0(𝑇𝑟) = 𝐴0𝑇𝑟 +𝐴1𝑇𝑟
0.5 + 𝐴2 +

𝐴3

𝑇𝑟
+

𝐴4

𝑇𝑟
2 +

𝐴5

𝑇𝑟
3 +

𝐴6

𝑇𝑟
4    

∆η(𝜌𝑟) = ∑ 𝐵𝑖𝜌𝑟
𝑖4

𝑖=1   

η(𝑇𝑟 , 𝜌𝑟) = 𝐻[η0(𝑇𝑟) + Δη(𝜌𝑟)]  

𝑘0(𝑇𝑟) = 𝐶0𝑇𝑟 + 𝐶1𝑇𝑟
0.5 + 𝐶2 +

𝐶3

𝑇𝑟
+

𝐶4

𝑇𝑟
2 +

𝐶5

𝑇𝑟
3 +

𝐶

𝑇𝑟
4    



∆k(𝜌𝑟) = ∑ 𝐷𝑖𝜌𝑟
𝑖4

𝑖=1   

k(𝑇𝑟 , 𝜌𝑟) = Λ[𝑘0(𝑇𝑟) + ∆k(𝜌𝑟)]  

Where 𝜌𝑟 = 𝜌/𝜌
∗    𝑇𝑟 = 𝑇/𝑇

∗  

Coefficients of the equations are given in Table  

Table Coefficients of viscosity and thermal conductivity equations  

𝑇∗ = 132.5 K 𝜌∗ = 314.3 kg/m3 Λ = 25.9778 (10−3𝑊/(𝑚𝐾) H=6.1609 (10-6 Pas)  

i Ai Bi Ci Di 

0 0.128517 0.465601 0.239503 0.402287 

1 2.60661 1.26469 0.00649768 0.356603 

2 -1 -0.511425 1 -0.163159 

3 -0.709661 0.2746 -1.92615 0.138059 

4 0.662534  2.00383 -0.0201725 

5 -0.197846  -1.07553  

6 0.00770147  0.229414  

 

Viscosity and thermal conductivity values of steam and water are taken from IAPWS Industrial 

Formulation 1997[15]. This equations are as follows: 

Viscosity equations: 
()=(𝛿, 𝜃) = ∗[

0
(𝜃)

1
(𝛿, 𝜃)]    

 
  

Where ∗ = 10−6 𝑃𝑎𝑠    𝛿 =
ρ

𝜌∗
     𝜃 = 𝑇/𝑇∗   

with 𝑇∗ = 𝑇𝑐 = 647.096 𝐾  𝜌∗ = 𝜌𝑐 = 322 𝑘𝑔/𝑚3   

0(𝜃) = 𝜃0.5[∑ 𝑛𝑖
04

𝑖=1 𝜃1−𝑖]
−1

    Coefficients of equation given below: 

Table 3.2 Coefficients of equation  

i 𝑛𝑖
0 

1 0.167752e-1 
2 0.220462e-1 
3 0.6366564e-2 
4 -0.241605e-2 


1
(𝛿, 𝜃) = 𝑒𝑥𝑝 [𝛿 ∑ 𝑛𝑖

21
𝑖=1 (𝛿 − 1)𝐼𝑖 (

1

𝜃
− 1)

𝐽𝑖
]    

Table Coefficients of equation 
i  Ii  Ji  Ni i  Ii  Ji  Ni 

1 0 0 5.200940E-01 12 2 2 -7.724790E-01 

2 0 1 8.508950E-02 13 2 3 -4.898370E-01 

3 0 2 -1.083740E+00 14 2 4 -2.570400E-01 

4 0 3 -2.895550E-01 15 3 0 1.619130E-01 

5 1 0 2.225310E-01 16 3 1 2.573990E-01 

6 1 1 9.991150E-01 17 4 0 -3.253720E-02 

7 1 2 1.887970E+00 18 4 3 6.984520E-02 

8 1 3 1.266130E+00 19 5 4 8.721020E-03 

9 1 5 1.205730E-01 20 6 3 -4.356730E-03 

10 2 0 -2.813780E-01 21 6 5 -5.932640E-04 

11 2 1 -9.068510E-01         

Thermal conductivity equations 
k(ρ)


∗ = (δ, θ)=0(θ)+1(δ)+2(δ,θ) 

0(θ)=𝜃
0.5∑𝑛𝑖

0

4

𝑖=1

𝜃𝑖−1 

Table  Coefficients of equation    
i 𝑛𝑖

0 

1 0.102811e-1 

2 0.299621e-1 

3 0.156146e-1 



4 -0.422464e-2 

1(δ)=𝑛1 + 𝑛2δ+𝑛3𝑒𝑥𝑝[𝑛4(𝛿 + 𝑛5)
2]    

Table Coefficients of equation  

i ni 

1 0.39707 

2 0.400302 

3 -0.171587e4 

4 -0.239219e1 

2(δ,θ)=(𝑛1𝜃
−10 +𝑛2)𝛿

1.8𝑒𝑥𝑝[𝑛2(1 − 𝛿
2.8)] + 𝑛4𝐴𝛿

𝐵𝑒𝑥𝑝 [(
𝐵

1+𝐵
)(1 − 𝛿1+𝐵)] +

𝑛5𝑒𝑥𝑝[𝑛6𝜃
1.5 + 𝑛7𝛿

−5]    

𝐴(𝜃) = 2 + 𝑛8(∆𝜃)
−0.6 

𝐵(𝜃) = {
(∆𝜃)−1  𝑓𝑜𝑟  𝜃 ≥ 1

𝑛9(∆𝜃)
−0.6  𝑓𝑜𝑟  𝜃 < 1

 3.27b  with   ∆𝜃 = |𝜃 − 1| + 𝑛10 

Table Coefficients of equation  

 i  ni  i  ni 

1 7.013090E-02 6 -4.117170E+00 

2 1.185200E-02 7 -6.179370E+00 

3 6.428570E-01 8 8.229940E-02 

4 1.699370E-03 9 1.009320E+01 

5 -1.020000E+00 10 3.089760E-03 

 

HEAT TRANSFER EQUATIONS 

Internal flow : 

Water is flowing inside channels. Water cross sectional area is not circular, therefore hydrolic 

diameter concept is used. 

Hydrolic diameter 

𝐷𝐻 =
4𝐴

𝑃
 

One phase pressure drop 

Goudar- Sonnad equation (2008) Valid region: all values 

𝑎 =
2

ln (10)
  

𝑏 =
(𝜀/𝐷)

3.7
  

𝑑 =
𝑙𝑛(10)

5.02
𝑅𝑒  

𝑠 = 𝑏𝑑 + ln (
𝑑

𝑞
) ;  

𝑞 = 𝑠(
𝑠

𝑠+1
)
 

 𝑔 = 𝑏𝑑 + ln (
𝑑

𝑞
)
        

𝑧 =
𝑞

𝑔
        

𝛿𝐿𝐴 =
𝑔

𝑔+1
𝑧

        
𝛿𝐶𝐹𝐴 = 𝛿𝐿𝐴 (1 +

𝑧/2

(𝑔+1)2+(
𝑧

3
)(2𝑔−1)

) 

 



1

√𝑓
= 𝑎 [𝑙𝑛(

𝑑

𝑞
) + 𝛿𝐶𝐹𝐴]

  
Laminar flow heat transfer: 

𝑁𝑢 = 3.66 

Heat transfer equations Fully developed transitional/intermittent region  Ts=const  

 

Abraham-Sparrow-Tong[34] equation  

𝑁𝑢 = 2.2407 (
𝑅𝑒

1000
)
4
− 29.499(

𝑅𝑒

1000
)
3
+ 142.32 (

𝑅𝑒

1000
)
2
− 292.51 (

𝑅𝑒

1000
) + 219.88       2300 ≤

𝑅𝑒 ≤ 3100 
Abraham recommended Gnilenski equation to be used above Re>3100  

Gnielinski[33] equation 

𝑁𝑢 =
(
𝑓

8
)(𝑅𝑒−1000)𝑃𝑟

1.07+12.7(
𝑓

8
)
.5
(𝑃𝑟

2
3−1)

     0.5 ≤ 𝑃𝑟 ≤ 2000    2300 ≤ 𝑅𝑒 ≤ 5106 

External natural convection: 

Churchill & Chu Equation for all Ra range[36] (valid both turbulent and laminar cases) 

Rayleigh Number: Ra𝑥 = Gr𝑥𝑃𝑟 =
𝑔𝛽(𝑇𝑠−𝑇∞)𝑥

3

α
     α=

𝑘

𝜌𝐶𝑝
 

Critical Rayleigh Number Ra𝑥,𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 10
9 

 

Nu𝐿 = 4/3Nu𝑥   

 

Nu𝐿 = {0.825 +
0.387𝑅𝑎𝐿

1/6

[1+(
0.492

Pr
)
9/16

]
8/27}

2

  

Natural convection heat transfer in channels 

For symmetrical heated, isothermal plates Elenbaas[58] equation is as folows: 

Nu𝑆 = (
𝑞/𝐴

𝑇𝑠−𝑇∞
)
𝑆

𝑘
=

1

24
𝑅𝑎𝑆 (

𝑆

𝐿
) [1 − 𝑒𝑥𝑝 (−

35

𝑅𝑎𝑆(
𝑆

𝐿
)
)]

3/4

  

where Rayleigh Number: Ra𝑆 =
𝑔𝛽(𝑇𝑠−𝑇∞)𝑆

3

α
      10−1 ≤ Ra𝑆 ≤ 10

5 

 
For constant heat flux cases 

Nu𝑆 = (
𝑞"𝑠

𝑇𝑠−𝑇∞
)
𝑆

𝑘
     Ra𝑆

∗ =
𝑔𝛽𝑞"𝑠𝑆

4

kα
  



for symmetric fully developed constant heat flux  

Nu𝑆𝐿 = 0.144[Ra𝑆
∗(𝑆/𝐿]1/2  

for asymmetric fully developed constant heat flux  

Nu𝑆𝐿 = 0.204[Ra𝑆
∗(𝑆/𝐿]1/2  

Bar-Cohen-Rohsenow[59] equation: 

For isothermal plates 

Nu𝑆𝐿 = [
576

(𝑅𝑎𝑆(
𝑆

𝐿
)
2
)
+

2.87

(𝑅𝑎𝑆(
𝑆

𝐿
)
1/2

)
]

−1/2

   10 ≤ Ra𝑆 ≤ 100   𝑇𝑠1 = 𝑇𝑠2  symmetric isothermal 

Nu𝑆𝐿 = [
144

(𝑅𝑎𝑆(
𝑆

𝐿
)
2
)
+

2.87

(𝑅𝑎𝑆(
𝑆

𝐿
)
1/2

)
]

−1/2

   10 ≤ Ra𝑆 ≤ 100   𝑇𝑠1 ,  𝑞𝑠2" = 0 isothermal adiabatic  

 
SIMULATION MODELLING 

We will consider a single fin and a single channel section. In this case fin will be exposed from inside 

region to a channel natural convection and from the output section a vertical wall natural convection 

which values differs. The temperature profiles of internal and external parts will also be differs. 

 

In vertical site Finite difference heat transfer equations starts from buttom, where air inlet temperature 

is the room temperature. Water inlet temperature and water exit temperature are given. Mass flow 

rateof water flow in channels are unknown. We will try to find the required flow rates correspondes to 

water inlet-outlet conditions. Finite difference heat transfer equations: 

Finite difference length: 

𝑑𝑧 =
𝐿

𝑁
 

Where L= radiator height 

N= number of finite difference division 

𝑑𝑄𝑖 = 𝑈𝑖𝑑𝐴𝑖(𝑇𝑤𝑎𝑡𝑒𝑟 − 𝑇𝑎𝑖𝑟) 

1

𝑈𝑖
=

1

ℎ𝑤𝑎𝑡𝑒𝑟 𝑖
+
𝑡𝑝𝑎𝑛𝑒𝑙
𝑘𝑝𝑎𝑛𝑒𝑙

+
1

𝜂𝑓𝑖𝑛 𝑖ℎ𝑎𝑖𝑟 𝑖
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𝑑𝑄𝑖 = 𝑚𝑤𝑎𝑡𝑒𝑟𝐶𝑝𝑤𝑎𝑡𝑒𝑟(𝑇𝑤𝑎𝑡𝑒𝑟 𝑖)(𝑇𝑤𝑎𝑡𝑒𝑟 𝑖 −𝑇𝑤𝑎𝑡𝑒𝑟 𝑖+1) 

𝑑𝑄𝑖 = 𝑑𝑄𝑖1 + 𝑑𝑄𝑖2 

In channel air flow: 

𝑑𝑄𝑖1 = 𝑚𝑎𝑖𝑟 1𝐶𝑝𝑎𝑖𝑟 1(𝑇𝑎𝑖𝑟 1 𝑖)(𝑇𝑎𝑖𝑟 1 𝑖 − 𝑇𝑎𝑖𝑟 1 𝑖+1) 

Out channel air flow: 

𝑑𝑄𝑖2 = 𝑚𝑎𝑖𝑟 2𝐶𝑝𝑎𝑖𝑟 2(𝑇𝑎𝑖𝑟 2 𝑖)(𝑇𝑎𝑖𝑟 2 𝑖 − 𝑇𝑎𝑖𝑟 2 𝑖+1) 

In natural convection air flow rate is difficult parameter,  Velocity profile can be approximated as: 

𝑈𝑎𝑖𝑟 = √2𝑔𝑑𝑧𝛽(𝑇𝑠 −𝑇𝑎𝑖𝑟) 

EXPERIMENTAL MEASUREMENTS 

Radiator thermal performance measurements are carried out according to EN 442-2 standard for 

testing radiators and convectors. According to this standard, Measurements are carried out for three 

different temperature zones 

∆𝑇 = 𝑇𝑚 −𝑇𝑟𝑜𝑜𝑚 = (30 ∓ 2.5)𝐾 

∆𝑇 = 𝑇𝑚 −𝑇𝑟𝑜𝑜𝑚 = (50 ∓ 2.5)𝐾 

∆𝑇 = 𝑇𝑚 −𝑇𝑟𝑜𝑜𝑚 = (60 ∓ 2.5)𝐾 

Where 𝑇𝑚 is the arithmetic average temperature between inlet and exit of water 

𝑇𝑚 =
𝑇𝑤_𝑖𝑛 +𝑇𝑤_𝑜𝑢𝑡
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And 𝑇𝑟𝑜𝑜𝑚 is the room temperatures. Room temperature and experiment wall temperatures should be 

set to a constant temperature of 20 ℃. In order to carry out this test, a laboratuary design with the 

specification of standards is required.  Test results will be fit into a simple curvefitting equation in the 

form of 

𝑄 = �̇�(ℎ𝑤_𝑖𝑛 − ℎ𝑤_𝑜𝑢𝑡) = 𝐾𝑀∆𝑇
𝑛 

Where Q is the heat transfer, �̇� is the mass flow rate of water flowing through radiator,  ℎ𝑤 is the 

water enthalpies at inlet and outlet. 𝐾𝑀 and n are the cırve fitting coefficients obtained as a result of 

experiments. In order to reduce measurements uncertainities, measuremnts of each point should be 

carried out several times (minimum of three times).  A laboratory system according to EN 442-2 is 

developed and a wide range of radiators are measured by using this facility. Some of the measurement 

results and curve fitting coefficients are given below. 

No Sample 

75/65o, DT=50K,       
20 oC room 

Measured 

Thermal output 

90/70o, DT=60K,        
20 oC room 

Measured 

Thermal output 

curve 
fitting 

coefficient 
n 

Model  

Constant 
Km 

Watt Kcal/h Watt Kcal/h 

1 -PK, size (mm) 300x1000 562 483 711 612 1.302 3.442738 



2 -PK, size (mm) 400x1000 722 621 916 788 1.296 4.542272 

3 -PK, size (mm) 500x1000 876 753 1108 953 1.289 5.656291 

4 -PK, size (mm) 600x1000 1026 882 1296 1115 1.2802 6.858 

5 -PK, size (mm) 700x1000 1151 990 1454 1251 1.277 7.795927 

6 -PK, size (mm) 800x1000 1280 1101 1615 1389 1.27 8.90958 

7 -PK, size (mm) 900x1000 1399 1203 1777 1529 1.3047 8.5079 

8 -PKP, size (mm) 300x1000 781 672 994 855 1.33 4.290071 

9 -PKP, size (mm) 400x1000 998 858 1267 1090 1.321 5.6744 

10 -PKP, size (mm) 500x1000 1193 1026 1517 1305 1.313 7.018701 

11 -PKP, size (mm) 600x1000 1389 1194 1761 1515 1.3013 8.5478 

12 -PKP, size (mm) 700x1000 1542 1326 1953 1680 1.295 9.725641 

13 -PKP, size (mm) 800x1000 1699 1461 2147 1847 1.286 11.09334 

14 -PKP, size (mm) 900x1000 1835 1578 2339 2013 1.3267 10.2333 

15 -PKKP, size (mm) 300x1000 1001 861 1275 1097 1.321 5.708583 

16 -PKKP, size (mm) 400x1000 1273 1095 1618 1392 1.319 7.303746 

17 -PKKP, size (mm) 500x1000 1528 1314 1941 1670 1.317 8.83681 

18 -PKKP, size (mm) 600x1000 1788 1537 2276 1958 1.3237 10.0782 

19 -PKKP, size (mm) 700x1000 2006 1725 2550 2194 1.313 11.79777 

20 -PKKP, size (mm) 800x1000 2233 1920 2835 2439 1.312 13.17181 

21 -PKKP, size (mm) 900x1000 2452 2109 3112 2678 1.31 14.57782 

22 -PKKPKP, size (mm) 300x1000 1448 1245 1846 1589 1.329 8.000871 

23 -PKKPKP, size (mm) 400x1000 1810 1557 2305 1983 1.329 9.988665 

24 -PKKPKP, size (mm) 500x1000 2149 1848 2737 2355 1.33 11.8142 

25 -PKKPKP, size (mm) 600x1000 2486 2138 3171 2728 1.335 13.4073 

26 -PKKPKP, size (mm) 700x1000 2791 2400 3556 3060 1.331 15.28534 

27 -PKKPKP, size (mm) 800x1000 3091 2658 3939 3389 1.331 16.92893 

28 -PKKPKP, size (mm) 900x1000 3391 2916 4340 3734 1.3483 17.3771 
 

 

In the figures below a radiator measured in the lab is shown. 

 



 

 

PROGRAM DEVELOPMENT & RESULTS 

Computer codes in Java programming language is developed to calculate thermal performance of 

radiators. In order to calculate thermodynamic and thermophysical properties of air and water, 

equation of state programs are developed, and then finite difference model of radiator gheat transfer is 

developed. The computer classes used in this simulations are as follows: 

Class name  

steamIAPWS_IF97 Steam-water equation of state and thermophysical properties 

air_PG_CS air equation of state (perfect gas) 

HT_radiator_elba1A Finite difference heat transfer and heat exchanger simulation 

  

Heat transfer predicitons from curve fitting function and computer model are shown below 

Calculated from 

curve fitting 

equation  

𝑄 = 𝐾𝑀∆𝑇
𝑛 

 

𝑇𝑤 = 75/65  ℃ 

𝑇𝑎𝑖𝑟 = 20 ℃ 

Calculated from 

curve fitting 

equation  

𝑄 = 𝐾𝑀∆𝑇
𝑛 

 

𝑇𝑤 = 90/70  ℃ 

𝑇𝑎𝑖𝑟 = 20 ℃  

 Calculated from 

simulation 
𝑇𝑤 = 75/65  ℃ 

𝑇𝑎𝑖𝑟 = 20 ℃ 

Calculated from 

simulation  
𝑇𝑤 = 90/70  ℃ 

𝑇𝑎𝑖𝑟 = 20 ℃ 



1002 1274.87072 1068 1303 

1272 1617.80873 1324 1618 

1527 1941.42554 1557 1902 

1787.761446 2275.73549 1773 2168 

2007 2549.83659 1977 2418 

2232 2835.17575 2172 2656 

2451 3112.22326 2359 2883 

 

Temperature profile for water inside channels, and air through fins are given below. 

 

Resul listed as a table, are also shown in graphic format in the following plots. 

 



 

If we look at the model outputs, for 75/65 water temperature and T=20 ℃  air temperature, The results 

are relatively similar to curve fitting results based on experiments. For 90/70 water temperature and 

T=20 ℃  air temperature, model underpredict. The model still will be an imporant tool to predict 

raditor performance and paremeter changes and their effects. Model used here has a specific geometry 

of 2 panels and 2 fin structures as shown in the figure previously.  
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