Radiator selection by considering building heat loss calculations according to ts-825 standard

M. T. Coban¹, S. Elce², S. Gunsel², S. Demiral³

¹Ege University, Dept of Mechanical Engineering, Izmir, Turkiye ²ECA ELBA, Organize sanayi bölgesi, 3. Kısım, Mustafa ÇAPRA Cad. No: 8, YunusEmre, Manisa, Turkiye

Abstract

Panel radiators are finned natural convective heat exchangers. Water flows inside chanels and outside air is heated up through finned and bare surfaces of heat exchanger. Radiator thermal performance measurements are carried out in companies labs according to EN 442-2 standard for testing radiators and convectors. Results are curve fitted according to EN 442-2 for various sizes. In order to select optimised panel radiator for domestic space heating, room heat loss should be determined accurately. Turkish standard TS-825 is given detailed definitions to determine heat loss of a building and a room. A computer model is designed according to description and data given in this standart to determine the heat loss of a single room. In heat loss considiration of the single room, each wall, ceiling etc. is investigated by also considering neigbour spaces, i.e if it is and outside or internal space, direction of the wall, location and outside conditions according to locations etc. As a part of the walls window and door heat transfers, air leaks, room air refrefshments requirements are alos considered. All this calculations are offered to user in friendly graphic user interfaces to be utilised in selection process. Program also contains curve fitted values obtained from lab measurements, so after calculating heat loss, it will suggest the best fitting Panel radiator selection available. The basic aim here is to supply a means of optimal radiator selection for a selected room in buildings. Models are intended for the users of small constructors to select appropriate radiators and approximate room heat loss with an easy to use tool.

Keywords: Building heat loss, panel radiators, radiator selection

Nomenclature

U	Overall heat transfer coefficient of wall W/m^2K					
R	,					
Ri	Overall the	ermal resistance of wall $m^2 K/W$				
, Ri	Internal the	ermal resistance of wall $m^2 K/W$				
Hi	Wall comp	opent i thermal resistance $m^2 K/W$				
hi	Internal th	ermal convectivity $W/m^2 K$				
h₋	External th	$M/m^2 K$				
ki	Wall com	ennal convectivity <i>W/III</i> K				
	Wall Comp	oneni j mermai conductivity				
0	Total boat	transfor of the wall W				
T:	Internel to					
T_	External te					
ΛT	External to					
T _m	Arithmetic					
Traam	Anthmetic					
Twin	Room terr					
Tw,in Tw, aut	Water inle					
I W,OUT	Water ex					
η	Viscosity	of air (Pa.s)				
ρ	Density o	of air (kg/m³)				
Pr Or	Prandtl n	umber				
Ср	Specific h	neat at constant pressure (kJ/kgK)				
ĸ	k	Thermal conductivity (W/mK)				
NU	Nu	Nusselt Number				
Re	Re	Reynolds number				
ка	Ra	Rayleigh number				
Gr	Gr	Grashoff number				

1. Introduction

Panel radiators are finned natural convective heat exchangers. They are utilised to heat buildings, mostly domestic places. Relatively simple structures of this heat exchangers makes it an attractive solution for space heating process. Another important properties of these devices are the long operating life due to it'S simplicity. There are no fan to drive air through the heat exchanger, therefore possibility of device failure is relatively low. One of the problem builders faces on selection of the required radiator in the building and sepecific rooms in the buildings is to determine the heat loss in the space and heat tranfer delivery of the radiator to compansate this heat loss. A model for heat loss based on TS825 standart and another model for heat transfer characteristics of radiatior utilising tests carried out laboratory performance tests based on TSEN442-2 standart. Model will be presented to builders to estimate room heat loss and radiator heat delivery. The details of methods carried out and formulations are presented in this paper.

2. Heat loss through walls

Heat loss through walls can be calculated by using thermal resistance and overall thermal convectivity coefficients. The thermal resistance of a wall can be calculated as

$$\frac{1}{U} = R = R_i + \sum_{j=1}^{N} R_j + R_e$$

Where:

U : Overall heat transfer coefficient of wall $W/m^2 K$ R : Overall thermal resistance of wall $\frac{m^2 K}{W}$ $R_i = \frac{1}{h_i}$ internal thermal resistance $\frac{m^2 K}{W}$ $R_e = \frac{1}{h_e}$ internal thermal resistance $\frac{m^2 K}{W}$ $R_j = \frac{\Delta x_j}{k_j}$ wall component j thermal resitance

 h_i : Internal thermal convectivity $\frac{W}{m_W^{2K}}$

 h_e : External thermal convectivity $\frac{W}{m^2 K}$

 k_j : wall component j thermal conductivity $\frac{W}{mK}$

Total heat transfer of the wall:

 $Q = UA(T_i - T_e)$

 T_i : internal temperature degree C

 T_e : external temperature degree C

Building temperatures listed in standard TS825 is given in Table 1. But user of the programs are free to select any values they desired to use in the simulation program graphic user interface. Thermal resistance of air gaps are given in Table 2. Overall heat transfer coefficients for the Windows are given in Table 3. And overall heat transfer coefficient of some doors are given in Table 4.

Table 1. Building internal temperature design values

	Name of the building	
1	Residential houses	19
2	Management centers	
3	Ofices	
4	Hotel, motel and	20
	restaurants	
5	Schools	
6	Theaters	
7	Military buildings	
8	Prisons	
9	Museums	
10	Airports	
11	Hospitals	22
12	Swimming pools	26
13	Factories	16

Table 2.	Thermal	resistance	of	air	gaps	5
----------	---------	------------	----	-----	------	---

No	State	Thickness (d) mm	Thermal resistance (R) m ² K/W
1	Vertical	≤ 10	0.14
		11-20	0.16
		21-50	0.18
		51-100	0.17
		100>	0.16
2	Horizontal(heat	≤ 10	0.14
	flux in with	11-20	0.15
	upper direction)	20>	0.16
3	Horizontal(heat	<u>≤</u> 10	0.15
	flux in lower	11-20	0.18
	direction)	20>	0.21

Table 3. overall heat coefficient of some windows

Overall heat transfer coefficients U for Windows	Single glass	Double	e glass	Double with reflecti covers	e glass ve
W/m²K	//m²K		Space between glasses (mm)		en S
		12	16	12	16
frameless	6.7	2.9	2.7	1.6	1.3
Wooden frame (hard woods)	4.57	2.64	2.50	1.74	1.53
Composit (PVC) frame2 layers	4.73	2.79	2.79	1.89	1.68
Composit (PVC) frame3 layers	4.63	2.70	2.70	1.80	1.59
Composit (PVC) frame4 layers	4.60	2.67	2.67	1.77	1.56
Composit (PVC) frame5 layers	4.57	2.64	2.64	1.74	1.53
Composit (PVC) frame6 layers	4.54	2.61	2.61	1.71	1.50
Aliminium frame	5.62	3.68	3.68	2.79	2.58
Aliminium frame (indulated bridges)	4.73	2.79	2.79	1.89	1.68

Table 4. overall heat coefficient of some doors

		U W/m ² K
1	Simple wooden door with single glass window	5.2
2	Wooden door with double layer glass window distance between glasses: 6 mm	3.3
3	Wooden door without glass	2.9
4	Wooden door with double layer glass window distance between glasses: 12 mm	3.5
5	Wooden external door without glass	2.6
6	Wooden door with two wing single glass window	2.6
7	Wooden door with framed two wing single glass windows	5.8
8	Metal door with double layer Windows distance between glasses: 6 mm	4.8
9	Metal door with double layer Windows distance between glasses: 12 mm	3.6
10	Metal door with two wing single glass window	3.5
11	Metal door with framed two wing single glass windows	3.3
12	Top single layer window-door metal	5.8
13	Top window with metal double layer door	3.5
14	Plastic door with single layer window	5.0
15	Plastic door with double layer window	2.6

The most importantly a very extensive list of building material thermal properties, density, thermal conductivity and water vapor diffusion coefficients are given in the standard. Presenting of all this extensive list in this paper is not possible, but According to standard, they all measured in the laboratories of Turkish standards Institute. the given data are compered some of with other data tables and found that results are comparable.

Table 5. Surface thermal resistance value (1/thermal convectivity)

No	Type of building	Surface Therr	nal resistance
	structure	value R=(1/h)	(1/thermal
		convectivity)	
		R _i internal	R _e External
		resistance	resistance
		(m²K/W)	(m²K/VV)
1	External wall		0.04
2	External wall where		0.08
	internal part is not	0.13	
	heating		
3	Wall between		0.13
	separate flats in the		
	same building,wall		
	that opposite		
	section is unheated		-
4	External wall		0
	connected to earth		
5	External horizontal		0.04
	or with some		
	angles		
6	Ceiling under attic		0.08
	or ventilated roof		
	shell		
7	Base between separa	ate flats	
7.1	Heat flux is from	0.13	0.13
	down to top		
7.2	Heat flux is from top	0.17	0.17
	to down		
8	Basement ceiling		
9	Base directly open	0.17	0.04
	to external air		
10	Base directly		0
	located on the		
	surface		

Table 6. Thermal resistance of air gaps in the wall

Air g	Air gaps						
No	State	Thickness (d) mm	Air gaps thermal resistance (R) (m ² K/W)				
		≤ 10	0.14				
1	Vertical	11-20	0.16				
		21-50	0.18				
		51-100	0.17				
		100>	0.16				
		≤ 10	0.14				
2	Horizontal (heat	11-20	0.15				
	flow is from down to up)	>20	0.16				
		≤ 10	0.15				
3	Horizontal (heat	11-20	0.18				
	flow is from up to down)	>20	0.21				

Eventhough thermal resistance wales on the wall surface is represented by some values in the standard (Table 5), It is preferred to calculate them from basic heat transfer equations. In internal surfaces Natural convective heat transfer is assumed. For external surfaces user defined external temperatures and wind speed is taken. If user is not given any external wind speed, it is assumed to be 2 m/s.

For thermodynamic and thermophysical properties of air ideal gas equation of state is assumed. For specific heat of air cubic spline curve fitting equations are utilized. Cubic spline equations are in form of

$$Cp_{k}(T_{k}) = y_{k} = b_{k}(T_{k+1} - T_{k}) + \left[\frac{(T_{k+1} - T_{k})^{3}}{6h_{k}}C_{k}\right]$$
$$= \left[b_{k}h_{k} + \frac{h_{k}^{3}}{6h_{k}}C_{k}\right]$$
(2.1)

Where

$$\begin{aligned} h_k &= T_{k+1} - T_k \quad 1 \le k \le n \quad (2.2) \\ w_k &= \frac{Cp_{k+1} - Cp_k}{h_k} = \frac{Cp_{k+1} - Cp_k}{T_{k+1} - T_k} \quad 1 \le k \le n \quad (2.3) \\ a_k &= \frac{[6Cp_{k+1} - h_k^2 c_{k+1}]}{6h_k} \quad 1 \le k \le n \end{aligned}$$

$$b_{k} = \frac{[6Cp_{k} - h_{k}^{2}c_{k}]}{6h_{k}} \quad 1 \le k \le n$$

$$(2.5)$$

$$= 6 \left[\left[\frac{Cp_{k+1} - Cp_k}{h_k} \right] - \left[\frac{Cp_k - Cp_{k-1}}{h_{k-1}} \right] \right]$$
(2.6)

Other thermodynamic properties are calculated from thermodynamic relations by using specific heat data.

The thermophysical properties of air, such as thermal conductivity and viscosity, are calculated with the equations suggested by Kadoya et al [1].

$$\eta(T_r, \rho_r) = H\big[\eta_0(T_r) + \Delta \eta(\rho_r)\big]$$
(2.7)

$$\eta_0(T_r) = A_0 T_r + A_1 T_r^{0.5} + A_2 + \frac{A_3}{T_r} + \frac{A_4}{T_r^2} + \frac{A_5}{T_r^3} + \frac{A_6}{T_r^4}$$

$$\Delta \eta(\rho_r) = \sum_{i=1}^4 B_i \rho_r^i$$

$$k(T_r, \rho_r) = \Lambda[k_0(T_r) + \Delta k(\rho_r)]$$

$$k_0(T_r) = C_0 T_r + C_1 T_r^{0.5} + C_2 + \frac{C_3}{T_r} + \frac{C_4}{T_r^2} + \frac{C_5}{T_r^3} + \frac{C}{T_r^4}$$
(2.8)

 $\Delta k(\rho_r) = \sum_{i=1}^{4} D_i \rho_r^i$ (2.10)

 $\rho_r = \frac{\rho}{\rho^*}$ reduced pressure

 $T_r = \frac{T}{T^*}$ reduced temperature

In Eq. (2.7) and Eq. (2.8) "*H*" is equal to 6.1609 (10⁻⁶ Pa), " Λ " is equal to 25.9778 (10⁻³ *W*/(*mK*), ρ^* is equal to 314.3 kg/*m*³ and *T*^{*} is equal to 132.5 K. The coefficients of Eq. (39) and (40) are given in Table 3.

 Table 7. Coefficients of viscosity and thermal conductivity

i	Ai	Bi	Ci	Di
0	0.128517	0.465601	0.239503	0.402287
1	2.60661	1.26469	0.006497 68	0.356603
2	-1	-0.511425	1	-0.163159
3	-0.709661	0.2746	-1.92615	0.138059
4	0.662534		2.00383	- 0.020172 5
5	-0.197846		-1.07553	
6	0.007701 47		0.229414	

For internal heat transfer Natural convection is assumed **Grashoff Number:** $Gr_{\chi} = \frac{g\beta(T_s - T_{\infty})x^3}{v^2}$ where

 $v = \frac{\mu}{\rho}$ $\beta = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T}\right)_p$ is the volumetric thermal expansion coefficient.

This term may be approximated as: $\beta \approx -\frac{1}{\rho} \left(\frac{\rho_{\infty} - \rho}{T_{\infty} - T} \right)$.

For a perfect gas:
$$\rho = P/RT$$
 therefore:
 $\beta = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T}\right)_P = \frac{1}{\rho} \frac{P}{RT^2} = \frac{1}{T} \ 1/K$
Rayleigh Number: $Ba_{TT} = Gr_{TT}Pr = \frac{g\beta(T)}{2}$

Rayleigh Number:
$$\operatorname{Ra}_{\chi} = \operatorname{Gr}_{\chi} Pr = \frac{g\beta(T_5 - T_{\infty})\chi^3}{v\alpha} \qquad \alpha = \frac{k}{\rho C_p}$$

Critical Rayleigh Number $Ra_{x,critical} = 10^9$ For vertical walls

Laminar free convection: Coban-2 equation similarity solution [8]

 $\mathrm{Nu}_{L} = \frac{4}{3} \left(\frac{\mathrm{Gr}_{L}}{4}\right)^{1/4} \frac{(0.022830145 + 0.752624416Pr^{\frac{1}{2}} + 2.08x10^{-4}\mathrm{Pr})}{(1.222236219 + 1.010421489Pr^{\frac{1}{2}} + 1.389905434\mathrm{Pr})^{1/4}}$ $0.01 \le Pr \le 1000 \quad 0 \le Ra_L \le 10^9$ [8]

For horizontal wall assuming internal space is warmer $L_c = \frac{A_s}{P}$ where A_s is the plate surface area and P is the perimeter

$$Ra_x = Gr_x Pr = \frac{g\beta(T_s - T_{\infty})L_c^3}{\nu\alpha}$$

Upper surface of Hot Plate or Lower surface of Cold Plate

$$\begin{split} \mathrm{Nu}_L &= 0.54 R a_L^{1/4} \quad 10^4 \leq R a_L \leq 10^7 \\ \mathrm{Nu}_L &= 0.15 R a_L^{1/3} \quad 10^7 \leq R a_L \leq 10^{11} \end{split}$$

Lower surface of Hot Plate or Upper surface of Cold Plate

 ${
m Nu}_L=0.27Ra_L^{1/4}$ $10^5\leq Ra_L\leq 10^{10}$ For external heat transfer both horizontal and vertical surfaces) forced convective heat transfer models are assumed

Coban-2 eqn[8] (similarity solution by Runge Kutta method and and least square curve fitting and Gauss integration)

 $Nu_x = 0.45584275 Re^{0.5} Pr^{0.47294717}$ $10^{-3} \le Pr \le 10^{-2}$ $Nu_{\chi} = 0.35271867 Re^{0.5} Pr^{0.40922589} \ 10^{-2} \le Pr \le 0.5$ $Nu_x = 0.33253715 Re^{0.5} Pr^{0.33694685} \ 0.5 \le Pr \le 1000$

Churchill and Ozoe experimental correlation:

 $Nu_{x} = \frac{0.332Re^{0.5}pr^{0.333333}}{\left[1 + \left(\frac{0.0468}{Pr}\right)^{2/3}\right]^{1/4}} \quad Pe_{x} = RePr \ge 100$

3. Experimental measurements

Radiator thermal performance measurements are carried out according to EN 442-2 standard for testing radiators and convectors. According to this standard, Measurements are carried out for three different temperature zones

 $\Delta T = T_m - T_{room} = (30 \mp 2.5)K$ $\Delta T = T_m - T_{room} = (50 \mp 2.5)K$ $\Delta T = T_m - T_r = (60 \mp 2.5)K$

$$\Delta I = I_m - I_{room} = (60 + 2.5)K$$

Where T_m is the arithmetic average temperature between inlet and exit of water

$$T_m = \frac{T_{w_in} + T_{w_out}}{2}$$

And T_{room} is the room temperatures. Room temperature and experiment wall temperatures should be set to a constant temperature of 20 °C. In order to carry out this test, a laboratuary design with the specification of standards is required. Test results will be fit into a simple curvefitting equation in the form of

 $Q = \dot{m} \big(h_{w_{in}} - h_{w_{out}} \big) = K_M \Delta T^n$

Where Q is the heat transfer, m is the mass flow rate of water flowing through radiator, h_w is the water enthalpies at inlet and outlet.

Water enthalpies are calculated from steam tables programs developed by using IAPWS Equation of state[10].

 K_M and n are the curve fitting coefficients obtained as a result of experiments. In order to reduce measurements uncertainities, measuremnts of each point should be carried out several times (minimum of three times). A laboratory system according to EN 442-2 is developed and a wide range of radiators are measured by using this facility. Some of the measurement results and curve fitting coefficients are given below.

Table 5.	Measure	vales	and	curve	fitting	coefficients
of radito	ors					

<u>, 1</u>	Ia							
			75/	′65°,	90/	′70°,		
			DT=	=50K	DT=	=60K,	curv	
				20	20)°C ́	е	
			°C r	room	ro	om	fittin	Model
	Ν	0	Me	asur	Mea	asure	q	Const
	0	Sample	e	ed		d	coeff	ant
			The	ermal	The	ermal	icien	K _m
			ou	tput	ou	tput	t	
			W	Kc	W	Kca	n	
			att	al/h	att	l/h		
F		-PK, size (mm)	56		71		1.30	3.442
	1	300x1000	2	483	1	612	2	738
F	-	-PK, size (mm)	72		91	-	1.29	4.542
	2	400x1000	2	621	6	788	6	272
ľ	~	-PK, size (mm)	87		11		1.28	5.656
	3	500x1000	6	753	08	953	9	291
F		-PK. size (mm)	10		12	111	1.28	
	4	600x1000	26	882	96	5	02	6.858
ľ	_	-PK. size (mm)	11		14	125	1.27	7.795
	5	700x1000	51	990	54	1	7	927
F	~	-PK. size (mm)	12	110	16	138		8.909
	6	800x1000	80	1	15	9	1.27	58
ļ	-	-PK, size (mm)	13	120	17	152	1.30	8.507
	1	900x1000	99	3	77	9	47	9
F		-PKP. size (mm)	78	-	99	-		4.290
	8	300x1000	1	672	4	855	1.33	071
F		-PKP, size (mm)	99	0	12	109	1.32	5.674
	9	400x1000	8	858	67	0	1	4
F	1	-PKP, size (mm)	11	102	15	130	1.31	7.018
	0	500x1000	93	6	17	5	3	701
F	1	-PKP, size (mm)	13	119	17	151	1.30	8.547
	1	600x1000	89	4	61	5	13	8
F	1	-PKP, size (mm)	15	132	19	168	1.29	9.725
	2	700x1000	42	6	53	0	5	641
ľ	1	-PKP, size (mm)	16	146	21	184	1.28	11.09
	3	800x1000	99	1	47	7	6	334
F	1	-PKP, size (mm)	18	157	23	201	1.32	10.23
	4	900x1000	35	8	39	3	67	33
ľ	1	-PKKP, size	10		12	109	1.32	5.708
	5	(mm) 300x1000	01	861	75	7	1	583
	1	-PKKP, size	12	109	16	139	1.31	7.303
	6	(mm) 400x1000	73	5	18	2	9	746
Γ	1	-PKKP, size	15	131	19	167	1.31	8.836
	7	(mm) 500x1000	28	4	41	0	7	81
Γ	1	-PKKP, size	17	153	22	195	1.32	10.07
	8	(mm) 600x1000	88	7	76	8	37	82
Γ	1	-PKKP, size	20	172	25	219	1.31	11.79
l	9	(mm) 700x1000	06	5	50	4	3	777
ſ	2	-PKKP, size	22	192	28	243	1.31	13.17
L	0	(mm) 800x1000	33	0	35	9	2	181
ſ	2	-PKKP, size	24	210	31	267		14.57
	1	(mm) 900x1000	52	9	12	8	1.31	782
ſ	2	-PKKPKP, size	14	124	18	158	1.32	8.000
L	2	(mm) 300x1000	48	5	46	9	9	871
ľ	2	-PKKPKP, size	18	155	23	198	1.32	9.988
L	3	(mm) 400x1000	10	7	05	3	9	665
ſ	2	-PKKPKP, size	21	184	27	235		11.81
L	4	(mm) 500x1000	49	8	37	5	1.33	42
ſ	2	-PKKPKP, size	24	213	31	272	1.33	13.40
L	5	(mm) 600x1000	86	8	71	8	5	73
ſ	2	-PKKPKP, size	27	240	35	306	1.33	15.28
L	6	(mm) 700x1000	91	0	56	0	1	534
ſ	2	-PKKPKP, size	30	265	39	338	1.33	16.92
L	7	(mm) 800x1000	91	8	39	9	1	893
ſ	2	-PKKPKP, size	33	291	43	373	1.34	17.37
L	8	(mm) 900x1000	91	6	40	4	83	71

In the figures below a radiator measured in the lab is shown.

Figure 1. ECA ELBA Radiator heat capacity measurement system

3. Program development

Several programs in java programming language is developed. In the table below list of classes and their functions are given:

Class name	Class type	Class function
odaP2_2022	JFrame	Basic graphic user interface (GUI) to combine all calculations
duvarP4	JPanel	GUI for wall calculations
duvar1		Detailed calculations for the wall, takes wall heat transfer charecteristics from class bina_malzeme1
secP1	JPanel	GUI for the window calculations
secP2	JPanel	GUI for the door calculations
Pencere1		Detailed heat transfer calculations for the window
kapi		Detailed heat transfer calculations for the door
bina_malzeme1		All wall material and heat transfer characterisation from vector of bina_malzeme_veri1 class
bina_malzeme_veri1		Data for single wall material
radyatorisi_2022		
pictureP	JPanel	Graphic output for Picture plus text
demo1		Display JFrame with static plot method
FrameGraphic	JFrame	Graphic User Interface
SteamIAPWS_IF97	class	Thermosynamic and thermophysical properties of steam
Air_PG_SP	class	Thermodynamic and thermophysical properties of air as perfect gas by using cubic spline Cp formulation

Table 6. Program class list and their functions

Building wall materials and their density plus thermal conductivity data is input into bina_malzeme_veril class. Actual data is entered into bina_malzeme1 class as a dynamic vector of built in java Vector class. An array of bina_malzeme1 class is entered into duvar1 class. Duvar1 also contains information such as the direction of the wall, and whether its an internal, external wall, floor or ceiling. Actual wall material information is entered in GUI class duvarP4 which includes class duvar1. In this class user can build new wall structures layer by layer or alternatively user can select walls from a predefined list of wall structures. In pencere1 class window heat transfer charecteristics and window area is defined. This class is interated with GUI class secP1. User can input the window the transfer charecteristics and area of the window. In kapi class heat

transfr characteristics and area of the door is defined. This class is integrated with GUI class secP2. User can input the door type and area of the door.

Figure 1. Main Graphic user interface (GUI) odaP2 2022

Figure 2. An information pop-up window odaP2_2022

Figure 3. An information pop-up window odaP2_2022

	hater duvar: sotlandar	
doner0		•
	oloşturulan davar: sonlandır	
india da ar 1 1995 - La 255 455 (1995) 1995 - La 255 455 (1995) 1995 - La 255 (1995) 1995 - L	12 12 004, editability (applicable) (applica	
	1.1.10 1.1.1 Kristal yapak pilskilirlik ve melamortik ingkar (mozali kvit.)/DOBAL TAŞLAR 1.1.20 1.1. Kristal yapak pilskilirlik ve melamortik ingkar (mozali kvit.)/DOBAL TAŞLAR	
nation in the second	1.1.0, 1.1 Kristel vanduniskirik za matemerik teder (mostik vi 2020). TASLAR	-
olu dag dalear		
luvar pealsyonu	davar parisyona : DD	
oda vertiert duvart pencere kapi		

Figure 4. An entry GUI for wall design & selection duvarP4 (selecting wall layers & structure by the user)

🛃 Duvar türleri	-	×
1 DOĞAL TAŞLAR		^
0- 1.1 Kristal yapılı püskürük ve metamorfik taslar (mozaik vi	b .)	
1- 1.2 Tortul sedimante taşlar (kum taşı travertenkonglomeral	ar vb.)	
2- 1.3 Gözenekli püskürük taşlar		
3- 1.4 Granit		
4- 1.5 Bazalt		
5-1.6 Mermer		
7-18 Yanav taslar		
2- DOĞAL ZEMİNLER		
0- 2.1 Kum kum-çakıl1- 2.2 Kil alüvyon		
3 Dökme malzemeler (hava kurusunda üzeri örtülü durumda)	
0- 3.1 Kum çakıl kırma taş (mıcır)		
1- 3.2 Bims çakılı (TS 3234)		
2- 3.3 Yüksek fırın cürufu		
3- 3.4 Kömür cürufu		

n ECA Mekan ısı kaybı hesabi ve radyatör seçimi	- D >
oda verileri duvar2 pencere kapı	
Duvar pozisyonu	duvar pozisyonu : ID
ID iç duvar	
kalınlık m	0.1
malzeme türü	1.1.10- 1.1 Kristal yapılı püskürük ve metamorfik taşlar (mozalk vb.)DOĞAL TAŞLAR
	duvara ekle
Seeilen hazır duvar :	
toplam U=0.834036638038028W/m²K	
Alan = 20.0toplam duvar kalınlığı = 0.25m	
en = 4.0boy = 5.0işletme türü = konutlarkat = 1yon =K	
Duvar pozisyonu : ID	
oda verileri'ne dön	
	oluşturulan duvar: sonlandır
duvarð	oluşturulan duvar: sonlandır
dovarð Hazar davar : toplam U=0.834036638038028W/m ⁴ K	olugtundan devar; sostandir
dovarð Hazz davar : toplam U=0.834036638038028W/m ³ K Alan = 20.0toplam davar kalnilgi = 0.25m	olaştanılan dovar; sonlandır
dorarð Hanr dwar : toplann U=0.834026638038028W/m ³ K Alan = 20.070plan dwar kalnihja = 0.25m er 4.0boy = 5.0jkruten tíri úr i konntikkat = 1 yan = K	oluşturulan devar; sonlandır

Figure 6. An entry GUI for wall design & selection duvarP4 (selecting walls from predefined wall list)

1 cift camb pe	ncere (kaplamasuz cam)	2 plastik doörama (2 odacıklı)	* 6	
en		boy		
1.5		1.5		
en = 1.5 boy = 1.5 U = 2.91Win A = 2.25m2 soçim =true	- presenter congreso file (2 00000001) 42%			

verileri duvar pencere Kapı2								
Radyatör tipi	21	•	• PK	P				
Radyatör Yüksekliği H	0.6 -		metre					
Radyatör Genişliği L	1.0	1.0 ¥ n		metre				
Radyator ortalama sıcaklığı (Tgiriş+Tçıkış)/2	70.0		rc .					
Radyatör isi Transferi Q	1805.0		w	att				
şletme türü	konutlar		-					
ida kat	2							
da duvar 1 yönü	Kuzey		•					
da iç sıcaklık	19.0		°C					
da dış sıcaklık	0.0							
ıda yan mekan sıcaklığı	10.0		°C					
ida en(duvar 2,4)	4.0			metre				
ida boy(duvar 1,3)	5.0		m	stre				
ıda yükseklik(duvar 1,2,3,4)	2.5		m	etre				
duvar1 duvar2	duvar3	duvar4		Tavan	Döşeme			
Pencere1_1 Pencere1_2	Pencere1_3	Pencere1_4		Pencere1_6	Pencere1_6			
Pencere2_1 Pencere2_2	Pencere2_3	Pencere2_4		Pencere2_6	Pencere2_6			
Pencere3_1 Pencere3_2	Pencere3_3	Pencere3_4		Pencere3_6	Pencere3_6			
Kapri Kapri	Kapı3	Карі 4		Kape5	Каріб			

Figure 8. An entry GUI for door design & selection secP2

All information for walls, Windows and doors combined as a room in one main GUI class odaP2 2022. In this class four side walls, one ceiling an done floor plus several doors and Windows in each wall is defined acording to above defined classes. In addition information such as building type, floor of the room, internal and external temperature profiles, including temperature of the neighbour rooms and room size (width, length and height) is defined. The program also adds up air renewal rates and additional heat requirements according to air refreshment process. In addition to this odaP2_2022 GUI is also included input data for the class radyatorisi 2022. By combining all this information total room heat loss is calculated. This class calculates heat generated from radiator according to size and types of selected radiator. Information about heat transfer charecteristics of radiators are measured in laboratory and curve fitting values are used to claculate the heat transfer output. Details of this is given in experimental measurements section of this paper.

Program codes are presented at <u>www.turhancoban.com</u> address.

4. Conclusions

A model for heat loss for buildings is prepared. Also another model for radiator heat transfer based on curve fitting data of experimental measuremets are prepared. The basic aim here is to supply a means of optimal radiator selection for a selected room in buildings. Models are intended fort he users of small constructers to select appropriate radiators and approximate room heat loss with an appropriate tools.

ıvar yapı detayları	-	Ľ	
duvar 1 U = 0.834036638038028A = 12.5en = 5.0boy=2.5	-		
duvar 2 U = 1.3988025402496347A = 10.0en = 4.0boy=2.5			
duvar 3 U = 1.051445737889598A = 12.5en = 5.0boy=2.5			
duvar 4 U = 1.3988025402496347A = 10.0en = 4.0boy=2.5			
duvar 5 U = 0.9435889056819575A = 20.0en = 4.0boy=5.0			
duvar 6 U = 1.6131566542711988A = 20.0en = 4.0boy=5.0			
pencere 1 U = 3.085000000000004 A = 2.25en = 1.5boy=	=1.5		
pencere 2 U = 6.7 A = 0.0en = 0.0boy=0.0			
pencere 3 U = 6.7 A = 0.0en = 0.0boy=0.0			
pencere 4 U = 6.7 A = 0.0en = 0.0boy=0.0			
pencere 5 U = 6.7 A = 0.0en = 0.0boy=0.0			
pencere 6 U = 6.7 A = 0.0en = 0.0boy=0.0			
pencere 7 U = 6.7 A = 0.0en = 0.0boy=0.0			
pencere 8 U = 6.7 A = 0.0en = 0.0boy=0.0			
pencere 9 U = 6.7 A = 0.0en = 0.0boy=0.0			
pencere 10 U = 6.7 A = 0.0en = 0.0boy=0.0			
pencere 11 U = 6.7 A = 0.0en = 0.0boy=0.0			
pencere 12 U = 6.7 A = 0.0en = 0.0boy=0.0			
pencere 13 U = 6.7 A = 0.0en = 0.0boy=0.0			
pencere 14 U = 6.7 A = 0.0en = 0.0boy=0.0			
pencere 15 U = 6.7 A = 0.0en = 0.0boy=0.0			
pencere 16 U = 6.7 A = 0.0en = 0.0boy=0.0			
pencere 17 U = 6.7 A = 0.0en = 0.0boy=0.0			
pencere 18 U = 6.7 A = 0.0en = 0.0boy=0.0			
kapı 1 U = 5.2 A = 0.0			
kapı 2 U = 5.2 A = 2.0			
kapı 3 U = 5.2 A = 0.0			
kapı 4 U = 5.2 A = 0.0			
kapı 5 U = 5.2 A = 0.0			
kapı 6 U = 5.2 A = 0.0			
	-		
•			

Figure 10. An output GUI window wall design & selection odaP2_2022 (Room heat loss values in details for each wall, window and doors)

References

- [1] K. Kadoya, N. Matsunaga, A. Nagashima, "Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase", *Journal of Physical and Chemical Reference Data 14*, 947, 1985.
- [2] **TS 825** Binalarda ısı yalıtım kuralları (Heat insulation rules in the buildings)
- [3] TS 2164 Kalorifer tesisatı projelendirme kuralları (Principles for the prefaration of the projects of the central heating systems)

- [4] Marchesi, R., Rinaldi, F., Tarini C., Arpino, F., Experimental analysis of radiators' thermal output for heat accounting. January 2*17 Thermal science 23(00): 168-168, DOI: 10.2298/TSCI170301168M
- [5] AYDIN, Suat, Düşük giriş suyu sıcaklıkları için yeni nesil panel radyatör geliştirilmesi (Development of new genaration radiators for low water temperature appliactions), MSc. Thesis, Uludağ university, Bursa, Turkiye
- [6] Gnielinski, New Equations for heat and mass transfer in turbulent pipe and channel flow, V., Int. Chem. Eng. , 16, 359-367, 1976
- [7] Numerical Thermodynamics, M. Turhan Coban, www.turhancoban.com
- [8] Numerical Heat Transfer, M. Turhan Coban, www.turhancoban.com
- [9] NIST-JANAF Thermochemical Tables [Online]. Available: <u>https://janaf.nist.gov/</u>, (accessed Jan. 1, 2022)
- [10] The International Association for the Properties of Water and Steam, Revised Relase on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, Lucerne, Switzerland, August 2007, IAPWS R7(2012)
- [11] TS EN 442-2 Radyatörler ve konvektörler-Bölüm 2: Deney metotları ve değerlendirme Standardı Kapsamında Gözetim (Radiators and convectors section 2- Experimental methods)

Acknowledgments

This study is carried out as an ECA ELBA company research and development project, and all radiator performance measurements are carried out their lab environment.