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1. INTRODUCTION 
The design of a fin and tube heat exchanger attempts to compensate for the poor heat transfer 

coefficient on the air side by increasing the air side heat transfer area using fins.  Fin and Tube type 

heat exchangers are usually used as forced convective heat transfer equipment for heating and cooling 

applications. They are not used commonly in natural convection type heating applications. In this 

study, fin and tube type natural convection heat exchanger thermal performance will be investigated 

by using simulation model and experimental measurements. Water flow inside tubes. Tubes are made 

of copper, Fins are made of alimininium and they are in plane configuration. Experimental 

measurements are carried out according to EN 442-2 standard for testing radiators and convectors. For 

computer simulations, a finite difference model in java computer language is developed. 

 

 

 
Figure 1. Fin and Tube natural convection heat exchanger used in experimental and computer 

simulation 

 



2. COMPUTER SIMULATION MODELS 
 

       2.1 EQUATION OF STATES 

In order to simulate the heat exchanger, equation of states and thermophysical properties such as 

viscosity, thermal convectivity is required. In fin and tube heat exchanger, water flows inside copper 

tubes, and air rise from outside through fins and tubes through natural convective and radiative 

heating. Therefore in order to developed a heat exchanger model, first requirement is to obtain 

properties of air and water 

2.1.1 Thermodynamic & thermophysical properties air as a perfect gas 

If an equation of state is given then all thermodynamic properties can be calculated by Consider an 

equation of state in the form of P(T,V) 

𝑑𝑠 = (
𝜕𝑠

𝜕𝑇
)
𝑣
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)
𝑇
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is used, equation becomes 
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u equation of state 1.14 rewritten as  𝑑𝑢 = 𝑇𝑑𝑠 − 𝑃𝑑𝑣 and above equation is substituted for ds 

𝑑𝑢 = 𝑇(
𝐶𝑣
𝑇
𝑑𝑇 + (

𝜕𝑃(𝑇, 𝑣)
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)
𝑣
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𝑣
−𝑃(𝑇, 𝑣)) 𝑑𝑣       

integration of the equation gives 

𝑢 = 𝑢0 +∫ 𝐶𝑣(𝑇)𝑑𝑇
𝑇

𝑇0
+ ∫ (𝑇 (

𝜕𝑃(𝑇,𝑣)

𝜕𝑇
)
𝑣
− 𝑃(𝑇, 𝑣)) 𝑑𝑣

𝑣

𝑣0
      

 

Ideal gas equation of state:  

𝑃(𝑇, 𝑉) =
𝑁𝑅𝑇

𝑉
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Where R=8.3145 kJ/(kmolK) is gas constant 
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𝑇
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In order to create perfect gas thermodynamic properties of air, The first step is look Specific heat data 

for air the standart air mixture 

Nitrogen N2 7.808400E+01 0.781121204 

Oxygen O2 2.094600E+01 0.209535433 

Argon Ar 9.340000E-01 0.009343364 

Carbondioxide CO2 3.970000E-02 
 

Neon Ne 1.818000E-03 
 

Helium He 5.240000E-04 
 

Methane CH4 1.790000E-04 
 

Water vapor H2O 0.00001-0.05 
 

  9.996400E+01 1 
If it is assumed that Air is made of only N2, O2 and Ar, it will be changed to: 

Name Formula   % vol M 

Nitrogen N2 78.084 0.781121204 28.014 

Oxygen O2 20.946 0.209535433 31.998 

Argon Ar 0.934 0.009343364 39.948 

Air     1 28.96029 

 

By finding specific heat data, we can able to establish the perfect gas equation of state. We will use 

Janaf tables from NIST (National Institute of Standards and Technology  Janaf.nist.gov) to obtain 

specific heat data. After obtaining Specific heat data for Nitrogen, Oxygen and Argonne, Specific heat 

data for air is obtained by using ideal gas mixing rules. After the airspecific heat data is obtainedCubic 

spline interpolation will be applied to model air properties. 

If a third degree polinomial is considered: 

𝑟𝑘(𝑥) = 𝑎𝑘(𝑥 − 𝑥𝑘)
3 + 𝑏𝑘(𝑥 − 𝑥𝑘)

2 + 𝑐(𝑥 − 𝑥𝑘)
3 + 𝑦𝑘      1 ≤ 𝑘 ≤ 𝑛     (2.1.18) 

In the interpolation proses polinoms should be passing through all data points 

𝑟𝑘(𝑥𝑘+1) = 𝑦𝑘+1   1 ≤ 𝑘 ≤ 𝑛     (2.1.19) 
In the same time the first derivative of the polynomial should also be continious while passing from 

one polynomial to the next one at the data point 

𝑟′𝑘−1(𝑥𝑘) = 𝑟′𝑘(𝑥𝑘)     1 ≤ 𝑘 ≤ 𝑛     (2.1.20) 



For the  third degree polinomial second derivative of the polynomial should also be continious while 

passing from one polynomial to the next one at the data point 

𝑟"𝑘−1(𝑥𝑘) = 𝑟"𝑘(𝑥𝑘)     1 ≤ 𝑘 ≤ 𝑛     (2.1.21) 

All these conditions are not enough to solve the coefficients of the polinomials. Two more conditions 

are required. This two additional conditions (A and B of the following equation) can be given by user 

𝑟"1(𝑥1) = 𝐴         𝑟"𝑛−1(𝑥𝑛) = 𝐵   (2.1.22) 

They are the second derivatives at the both hand of the series of polinomials. If A and B values are 

taken equals to 0, it is called a natural cubic spline. Other end conditions such as the ones depends 

one the first derivatives can also be set to solve the system of equations. 

Defining ℎ𝑘 = 𝑥𝑘+1 − 𝑥𝑘     1 ≤ 𝑘 ≤ 𝑛     (2.1.23) 

System of equations become: 

𝑎𝑘ℎ𝑘
3 + 𝑏𝑘ℎ𝑘

2 + 𝑏𝑘ℎ𝑘 = 𝑦𝑘+1 − 𝑦𝑘  1 ≤ 𝑘 ≤ 𝑛     (2.1.24) 

3𝑎𝑘−1ℎ𝑘−1
2 + 2𝑏𝑘−1ℎ𝑘−1 + 𝑐𝑘−1−𝑐𝑘 = 0  

6𝑎𝑘−1ℎ𝑘−1
 + 2𝑏𝑘−1  + 2𝑏𝑘 = 0  

3𝑏0 = 0  

6𝑎𝑛−1ℎ𝑛−1
 + 2𝑏𝑛−1  = 0  

  

This set contains 3n-3 equations. This could  a considerable load to the system of equation solving 

programs. To make calculation load simpler a special third degree polinomial can be considered. If our 

cubic polinomial is in the form of:  

𝑠𝑘(𝑥) = 𝑎𝑘(𝑥 − 𝑥𝑘) + 𝑏𝑘(𝑥𝑘+1 − 𝑥) + [(𝑥 − 𝑥𝑘)
3𝑐𝑘+1 + (𝑥𝑘+1 − 𝑥)

3𝑐𝑘] /(6ℎ𝑘)    1 ≤ 𝑘 ≤ 𝑛    (2.1.25) 
then derivative equations becomes 

𝑠′𝑘(𝑥) = 𝑎𝑘 − 𝑏𝑘 + [(𝑥 − 𝑥𝑘)
2𝑐𝑘+1 − (𝑥𝑘+1 − 𝑥)

2𝑐𝑘] /ℎ𝑘   1 ≤ 𝑘 ≤ 𝑛      (2.1.26) 

𝑠"𝑘(𝑥) = [(𝑥 − 𝑥𝑘)𝑐𝑘+1 − (𝑥𝑘+1 − 𝑥)𝑐𝑘] /ℎ𝑘                            1 ≤ 𝑘 ≤ 𝑛  

ak ve bk  coefficients can be expressed as a function of ck 

𝑏𝑘 =
[6𝑦𝑘 − ℎ𝑘𝑐𝑘]

6ℎ𝑘
        1 ≤ 𝑘 ≤ 𝑛       (2.1.27) 

𝑎𝑘 =
[6𝑦𝑘+1 − ℎ𝑘

2𝑐𝑘+1]

6ℎ𝑘
        1 ≤ 𝑘 ≤ 𝑛       (2.1.28) 

In this case only ck terms left in the system of equations to be solved. 

ℎ𝑘−1𝑐𝑘−1 + 2(ℎ𝑘−1 − ℎ𝑘)𝑐𝑘−1 + ℎ𝑘𝑐𝑘+1𝑐𝑘+1 = 6 [
𝑦𝑘+1 − 𝑦𝑘

ℎ𝑘
−
𝑦𝑘 − 𝑦𝑘−1

ℎ𝑘−1
]        1 ≤ 𝑘 ≤ 𝑛       (2.1.29)       

This system of equation has only n-2 terms to be solved. By making definition  

𝑤𝑘 =
𝑦𝑘+1−𝑦𝑘

ℎ𝑘
,      1  k   n  (2.1.31) 

System of equation becomes 

[
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⋯
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{
  
 

  
 

𝐴
6(𝑤2 −𝑤1)
6(𝑤3 −𝑤2)

⋯
6(𝑤𝑛−2 −𝑤𝑛−3)

6(𝑤𝑛−1 −𝑤𝑛−2)
𝐵 }

  
 

  
 

 (2.1.30) 

 

Where A and B are the second derivative end conditions. A and B should be defined by user. Another 

important property of the above matrix is that it is a band matrix, therefore less amount of calculation 

is required to solve it (by using band matrix algorithms such as Thomas algorithm). 

Cubic spline method has two advantages, the first is very accurate represantion of data, and the second 

one is ability to directly integrate and derivate the spline function. 



 

Formulations of other thermophysical and thermodynamic properties  

In order to calculate thermopysical properties (thermal conductivity and viscosity) of dry air Kadoya et al[135] 

equations are used. This equations has the following form: 

η0(𝑇𝑟) = 𝐴0𝑇𝑟 +𝐴1𝑇𝑟
0.5 + 𝐴2 +

𝐴3

𝑇𝑟
+

𝐴4

𝑇𝑟
2 +

𝐴5

𝑇𝑟
3 +

𝐴6

𝑇𝑟
4    

∆η(𝜌𝑟) = ∑ 𝐵𝑖𝜌𝑟
𝑖4

𝑖=1   

η(𝑇𝑟 , 𝜌𝑟) = 𝐻[η0(𝑇𝑟) + Δη(𝜌𝑟)]  

𝑘0(𝑇𝑟) = 𝐶0𝑇𝑟 + 𝐶1𝑇𝑟
0.5 + 𝐶2 +

𝐶3

𝑇𝑟
+

𝐶4

𝑇𝑟
2 +

𝐶5

𝑇𝑟
3 +

𝐶

𝑇𝑟
4    

∆k(𝜌𝑟) = ∑ 𝐷𝑖𝜌𝑟
𝑖4

𝑖=1   

k(𝑇𝑟 , 𝜌𝑟) = Λ[𝑘0(𝑇𝑟) + ∆k(𝜌𝑟)]  

Where 𝜌𝑟 = 𝜌/𝜌
∗    𝑇𝑟 = 𝑇/𝑇

∗  

Coefficients of the equations are given in Table  

Table Coefficients of viscosity and thermal conductivity equations  

𝑇∗ = 132.5 K 𝜌∗ = 314.3 kg/m3 Λ = 25.9778 (10−3𝑊/(𝑚𝐾) H=6.1609 (10-6 Pas)  

i Ai Bi Ci Di 

0 0.128517 0.465601 0.239503 0.402287 

1 2.60661 1.26469 0.00649768 0.356603 

2 -1 -0.511425 1 -0.163159 

3 -0.709661 0.2746 -1.92615 0.138059 

4 0.662534  2.00383 -0.0201725 

5 -0.197846  -1.07553  

6 0.00770147  0.229414  

 

2.1.2 Thermodynamic & thermophysical properties of water and steam 

In recent years maximum operating temperatures and pressures of Rankine cycle power plants 

has increased. International Association for the Properties of Water and Steam(IAPWS) is 

developed a new set of equation of states which are more accurate and covers larger range of 

data. This new set of equations are developed in 1997[59]. Steam properties are given by 5 sets 

of equation of states, as shown in the Figure  



 
                                  Figure IAPWS 97 Equation of state regions for steam 

 

The first equation, which covers basically liquid region has the following gibbs free energy 

form: 

𝑔1(𝑃, 𝑇)

𝑅𝑇
= 𝛾(𝜋, 𝜏) =∑𝑛𝑖(71 − 𝜋)

𝐼𝑖

34

𝑖=1

(𝜏 − 1222)𝐽𝑖    

Where 𝜋 =
𝑃

𝑃∗
   𝜏 =

𝑇∗

𝑇
   p*=16.62 MPa and T*=1386 K   R=0461526 kJ/(kgK) 

Table 2.6.4 coefficients of eqn. 2.6.11 
i Ii Ji ni i Ii Ji ni 

1 0 -2 0.14632971213167 18 2 3 -4.4141845331E-06 

2 0 -1 -0.84548187169114 19 2 17 -7.2694996298E-16 

3 0 0 -3.75636036720400 20 3 -4 -3.1679644845E-05 

4 0 1 3.38551691683850 21 3 0 -2.8270797985E-06 

5 0 2 -0.95791963387872 22 3 6 -8.5205128120E-10 

6 0 3 0.15772038513228 23 4 -5 -2.2425281908E-06 

7 0 4 -0.01661641719950 24 4 -2 -6.5171222896E-07 

8 0 5 0.00081214629984 25 4 10 -1.4341729938E-13 

9 1 -9 0.00028319080124 26 5 -8 -4.0516996860E-07 

10 1 -7 -0.00060706301566 27 8 -11 -1.2734301742E-09 

11 1 -1 -0.01899006821842 28 8 -6 -1.7424871231E-10 

12 1 0 -0.03252974877051 29 21 -29 -6.8762131296E-19 

13 1 1 -0.02184171717541 30 23 -31 1.4478307829E-20 

14 1 3 -0.00005283835797 31 29 -38 2.6335781663E-23 

15 2 -3 -0.00047184321073 32 30 -39 -1.1947622640E-23 

16 2 0 -0.00030001780793 33 31 -40 1.8228094581E-24 

17 2 1 0.00004766139391 34 32 -41 -9.3537087292E-26 

 
Thermodynamic relations can be calculated from these thermodynamic relations 

Specific volume:  𝑣 = (
𝜕𝑔

𝜕𝑃
)
𝑇
 (2.6.12) 

Specific enthalpy: ℎ = 𝑔 − 𝑇 (
𝜕𝑔

𝜕𝑇
)
𝑃

  (2.6.13) 

Specific internal energy: 𝑢 = 𝑔 − 𝑇 (
𝜕𝑔

𝜕𝑇
)
𝑃
− 𝑃 (

𝜕𝑔

𝜕𝑃
)
𝑇
  (2.6.14) 

Specific entropy: 𝑠 = (
𝜕𝑔

𝜕𝑇
)
𝑃

 (2.6.15) 

Specific isobaric heat capacity: 𝐶𝑝 = (
𝜕ℎ

𝜕𝑇
)
𝑃

 (2.6.16) 

Specific isochoric heat capacity: 𝐶𝑣 = (
𝜕𝑢

𝜕𝑇
)
𝑣
 (2.6.17) 



The second equation equation, which covers vapor region has the following gibbs free energy 

form: 
𝑔2(𝑃,𝑇)

𝑅𝑇
= 𝛾(𝜋, 𝜏) = 𝛾0(𝜋, 𝜏) + 𝛾𝑟(𝜋, 𝜏)   (2.6.18) 

Where 𝜋 =
𝑃

𝑃∗
   𝜏 =

𝑇∗

𝑇
  R=0.461526 kJ/(kgK), 𝛾0(𝜋, 𝜏)is the ideal gas part of EOS, and 

𝛾𝑟(𝜋, 𝜏)is the real gas departure the EOS. İdeal gas part equation: 

𝛾0(𝜋, 𝜏) = ln(𝜋) +∑𝑛𝑖
0𝜏𝐽𝑖

9

𝑖=1

    (2.6.19) 

Where P*=1MPa and T*=540 K 

Table 2.6.5 coefficients of eqn. 2.6.19 
i Ji ni

0 i Ji ni
0 

1 0 -9.692768650E+00 6 -2 1.4240819171E+00 
2 1 1.008665597E+01 7 -1 -4.3839511319E+00 
3 -5 -5.608791128E-03 8 2 -2.8408632461E-01 
4 -4 7.145273808E-02 9 3 2.1268463753E-02 
5 -3 -4.071049822E-01       

 
dimensionless residual part of the basic equation g2( p,T ) is as follows: 

𝛾𝑟(𝜋, 𝜏) =∑𝑛𝑖𝜋
𝐼𝑖(𝜏 − 0.5)𝐽𝑖

43

𝑖=1

    (2.6.20) 

Where P*=1MPa and T*=540 K 

Table 2.6.6 coefficients of eqn. 2.6.20 
 i  Ii  Ji ni  i  Ii  Ji ni 

1 1 0     7 0 -5.9059564324270E-18 
2 1 1 -1.7834862292358E-02 24 7 11 -1.2621808899101E-06 
3 1 2 -4.5996013696365E-02 25 7 25 -3.8946842435739E-02 
4 1 3 -5.7581259083432E-02 26 8 8 1.1256211360459E-11 
5 1 6 -5.0325278727930E-02 27 8 36 -8.2311340897998E+00 
6 2 1 -3.3032641670203E-05 28 9 13 1.9809712802088E-08 
7 2 2 -1.8948987516315E-04 29 10 4 1.0406965210174E-19 
8 2 4 -3.9392777243355E-03 30 10 10 -1.0234747095929E-13 
9 2 7 -4.3797295650573E-02 31 10 14 -1.0018179379511E-09 
10 2 36 -2.6674547914087E-05 32 16 29 -8.0882908646985E-11 
11 3 0 2.0481737692309E-08 33 16 50 1.0693031879409E-01 
12 3 1 4.3870667284435E-07 34 18 57 -3.3662250574171E-01 
13 3 3 -3.2277677238570E-05 35 20 20 8.9185845355421E-25 
14 3 6 -1.5033924542148E-03 36 20 35 3.0629316876232E-13 
15 3 35 -4.0668253562649E-02 37 20 48 -4.2002467698208E-06 
16 4 1 -7.8847309559367E-10 38 21 21 -5.9056029685639E-26 
17 4 2 1.2790717852285E-08 39 22 53 3.7826947613457E-06 
18 4 3 4.8225372718507E-07 40 23 39 -1.2768608934681E-15 
19 5 7 2.2922076337661E-06 41 24 26 7.3087610595061E-29 
20 6 3 -1.6714766451061E-11 42 24 40 5.5414715350778E-17 
21 6 16 -2.1171472321355E-03 43 24 58 -9.4369707241210E-07 
22 6 35 -2.3895741934104E+01         

 

Region 3 equation is given as Helmholts free energy form: 

𝑓3(𝜌, 𝑇)

𝑅𝑇
= 𝜙(𝛿, 𝜏) = 𝑛1 ln(𝛿) +∑𝑛𝑖𝛿

𝐼𝑖𝜏𝐽𝑖
40

𝑖=2

   (2.6.21) 

Where 𝛿 =
𝜌

𝜌∗
   𝜏 =

𝑇∗

𝑇
 , T*=Tc=647.096 and  R=0461526 kJ/(kgK) 

Table 2.6.4 coefficients of eqn. 2.6.11 
 i  Ii  Ji ni  i  Ii  Ji ni 

1 0 0 1.065807002851E+00 21 3 4 -2.0189915023570E+00 
2 0 0 -1.573284529024E+01 22 3 16 -8.2147637173963E-03 
3 0 1 2.094439697431E+01 23 3 26 -4.7596035734923E-01 
4 0 2 -7.686770787872E+00 24 4 0 4.3984074473500E-02 
5 0 7 2.618594778795E+00 25 4 2 -4.4476435428739E-01 
6 0 10 -2.808078114862E+00 26 4 4 9.0572070719733E-01 
7 0 12 1.205336969652E+00 27 4 26 7.0522450087967E-01 
8 0 23 -8.456681281250E-03 28 5 1 1.0770512626332E-01 
9 1 2 -1.265431547771E+00 29 5 3 -3.2913623258954E-01 
10 1 6 -1.152440780668E+00 30 5 26 -5.0871062041158E-01 



11 1 15 8.852104398432E-01 31 6 0 -2.2175400873096E-02 
12 1 17 -6.420776518161E-01 32 6 2 9.4260751665092E-02 
13 2 0 3.849346018667E-01 33 6 26 1.6436278447961E-01 
14 2 2 -8.521470882421E-01 34 7 2 -1.3503372241348E-02 
15 2 6 4.897228154188E+00 35 8 26 -1.4834345352472E-02 
16 2 7 -3.050261725697E+00 36 9 2 5.7922953628084E-04 
17 2 22 3.942053687915E-02 37 9 26 3.2308904703711E-03 
18 2 26 1.255840842431E-01 38 10 0 8.0964802996215E-05 
19 3 0 -2.799932969871E-01 39 10 1 -1.6557679795037E-04 
20 3 2 1.389979956946E+00 40 11 26 -4.4923899061815E-05 

 

It should be noted that this set of equation is function of density and temperature, and basic equation is helmholts 

equation so, let us list definition of other thermodynamic properties 

Pressure: 𝑃 = 𝜌2 (
𝜕𝑓

𝜕𝜌
)
𝑇

  

Specific enthalpy: ℎ = 𝑓 − 𝑇 (
𝜕𝑓

𝜕𝑇
)
𝑝
+ 𝜌 (

𝜕𝑓

𝜕𝜌
)
𝑇

  

Specific internal energy: 𝑢 = 𝑓 − 𝑇 (
𝜕𝑓

𝜕𝑇
)
𝑝
  

Specific entropy: 𝑠 = (
𝜕𝑓

𝜕𝑇
)
𝜌

  

Specific isobaric heat capacity: 𝐶𝑝 = (
𝜕ℎ

𝜕𝑇
)
𝑝
  

 

Specific isochoric heat capacity: 𝐶𝑣 = (
𝜕𝑢

𝜕𝑇
)
𝑣
  

Region 4 of the equation defines saturation region. The basic equation is given as a polynomial 

𝛽2𝜗2 + 𝑛1𝛽
2𝜗 + 𝑛2𝛽

2 + 𝑛3𝛽𝜗
2 + 𝑛4𝛽𝜗 + 𝑛5𝛽 + 𝑛6𝜗

2 + 𝑛7𝜗 + 𝑛8 = 0   (2.6.18) 
Where 

𝛽 = (
𝑃𝑠

𝑃∗
)
0.25

     

𝜗 =
𝑇𝑠

𝑇∗
+

𝑛9

(
𝑇𝑠
𝑇∗
)−𝑛10

   

From this equation both saturation pressure and saturation temperature equation can be derived. 
𝑃𝑠

𝑃∗
= [

2𝐶

−𝐵+(𝐵2−4𝐴𝐶)0.5
]
4

  

Where P*=1 MPa 

𝐴 = 𝜗2 + 𝑛1𝜗 + 𝑛2  

𝐵 = 𝑛3𝜗
2 + 𝑛4𝜗 + 𝑛5  

𝐶 = 𝑛6𝜗
2 + 𝑛7𝜗 + 𝑛8  

Table coefficients of eqn 

i ni i ni 

1 1.1670521453E+03 6 1.4915108614E+01 

2 -7.2421316703E+05 7 -4.8232657362E+03 

3 -1.7073846940E+01 8 4.0511340542E+05 

4 1.2020824702E+04 9 -2.3855557568E-01 

5 -3.2325550322E+06 10 6.5017534845E+02 

It is also possible to drive saturation temperature equation from the basic polynomial as: 

𝑇𝑠

𝑇∗
=
𝑛10 + 𝐷 − [(𝑛10 + 𝐷)

2 − 4(𝑛9 + 𝑛10𝐷)]
0.5

2
   (2.6.22) 

Where T*=1 K 

𝐷 =
2𝐺

−𝐹 − (𝐹2 − 4𝐸𝐺)0.5
 

𝐸 = 𝛽2 + 𝑛3𝛽 + 𝑛6 

𝐹 = 𝑛1𝛽
2 + 𝑛4𝛽 + 𝑛7 

𝐺 = 𝑛2𝛽
2 + 𝑛5𝛽 + 𝑛8  

And the final region for steam is region 5, again given as gibbs free equation type EOS 
𝑔5(𝑃,𝑇)

𝑅𝑇
= 𝛾(𝜋, 𝜏) = 𝛾0(𝜋, 𝜏) + 𝛾𝑟(𝜋, 𝜏)  (2.6.23) 

Where 𝜋 =
𝑃

𝑃∗
   𝜏 =

𝑇∗

𝑇
    R=0.461526 kJ/(kgK), 𝛾0(𝜋, 𝜏)is the ideal gas part of EOS, and 

𝛾𝑟(𝜋, 𝜏)is the real gas difference of the EOS. İdeal gas part equation: 



𝛾0(𝜋, 𝜏) = ln(𝜋) + ∑ 𝑛𝑖
0𝜏𝐽𝑖9

𝑖=1   (2.6.24) 

Where p*=1MPa and T*=1000 K 

Table coefficients of eqn.  

 i  Ji
0  ni

0  i  Ji
0  ni

0 

1 0 -13.1799836742 4 -2 0.3690153498 

2 1 6.8540841634 5 -1 -3.1161318214 

3 -3 -0.0248051489 6 2 -0.3296162654 

The real gas part of the equation 

𝛾𝑟(𝜋, 𝜏) =∑𝑛𝑖𝜋
𝐼𝑖𝜏𝐽𝑖

43

𝑖=1

   (2.6.25) 

Table coefficients of eqn. 2.6.25 

i Ii Ji ni i Ii Ji ni 

1 1 1 1.5736404855E-03 4 2 3 2.2440037409E-06 

2 1 2 9.0153761674E-04 5 2 9 -4.1163275453E-06 

3 1 3 -5.0270077678E-03 6 3 7 3.7919454823E-08 

 

Formulations of other thermophysical and thermodynamic properties  

In order to calculate thermopysical properties (thermal conductivity and viscosity) of dry air Kadoya et al[135] 

equations are used. This equations has the following form: 

η0(𝑇𝑟) = 𝐴0𝑇𝑟 +𝐴1𝑇𝑟
0.5 + 𝐴2 +

𝐴3

𝑇𝑟
+

𝐴4

𝑇𝑟
2 +

𝐴5

𝑇𝑟
3 +

𝐴6

𝑇𝑟
4    

∆η(𝜌𝑟) = ∑ 𝐵𝑖𝜌𝑟
𝑖4

𝑖=1   

η(𝑇𝑟 , 𝜌𝑟) = 𝐻[η0(𝑇𝑟) + Δη(𝜌𝑟)]  

𝑘0(𝑇𝑟) = 𝐶0𝑇𝑟 + 𝐶1𝑇𝑟
0.5 + 𝐶2 +

𝐶3

𝑇𝑟
+

𝐶4

𝑇𝑟
2 +

𝐶5

𝑇𝑟
3 +

𝐶

𝑇𝑟
4    

∆k(𝜌𝑟) = ∑ 𝐷𝑖𝜌𝑟
𝑖4

𝑖=1   

k(𝑇𝑟 , 𝜌𝑟) = Λ[𝑘0(𝑇𝑟) + ∆k(𝜌𝑟)]  

Where 𝜌𝑟 = 𝜌/𝜌
∗    𝑇𝑟 = 𝑇/𝑇

∗  

Coefficients of the equations are given in Table  

Table Coefficients of viscosity and thermal conductivity equations  

𝑇∗ = 132.5 K 𝜌∗ = 314.3 kg/m3 Λ = 25.9778 (10−3𝑊/(𝑚𝐾) H=6.1609 (10-6 Pas)  

i Ai Bi Ci Di 

0 0.128517 0.465601 0.239503 0.402287 

1 2.60661 1.26469 0.00649768 0.356603 

2 -1 -0.511425 1 -0.163159 

3 -0.709661 0.2746 -1.92615 0.138059 

4 0.662534  2.00383 -0.0201725 

5 -0.197846  -1.07553  

6 0.00770147  0.229414  

 

Viscosity and thermal conductivity values of steam and water are taken from IAPWS Industrial 

Formulation 1997[15]. This equations are as follows: 

Viscosity equations: 

()=(𝛿, 𝜃) = ∗[
0
(𝜃)

1
(𝛿, 𝜃)]    

 
  

Where ∗ = 10−6 𝑃𝑎𝑠    𝛿 =
ρ

𝜌∗
     𝜃 = 𝑇/𝑇∗   

with 𝑇∗ = 𝑇𝑐 = 647.096 𝐾  𝜌∗ = 𝜌𝑐 = 322 𝑘𝑔/𝑚3   

0(𝜃) = 𝜃0.5[∑ 𝑛𝑖
04

𝑖=1 𝜃1−𝑖]
−1

    Coefficients of equation given below: 



Table 3.2 Coefficients of equation  

i 𝑛𝑖
0 

1 0.167752e-1 
2 0.220462e-1 
3 0.6366564e-2 
4 -0.241605e-2 

1(𝛿, 𝜃) = 𝑒𝑥𝑝 [𝛿 ∑ 𝑛𝑖
21
𝑖=1 (𝛿 − 1)𝐼𝑖 (

1

𝜃
− 1)

𝐽𝑖
]    

Table Coefficients of equation 
i  Ii  Ji  Ni i  Ii  Ji  Ni 

1 0 0 5.200940E-01 12 2 2 -7.724790E-01 

2 0 1 8.508950E-02 13 2 3 -4.898370E-01 

3 0 2 -1.083740E+00 14 2 4 -2.570400E-01 

4 0 3 -2.895550E-01 15 3 0 1.619130E-01 

5 1 0 2.225310E-01 16 3 1 2.573990E-01 

6 1 1 9.991150E-01 17 4 0 -3.253720E-02 

7 1 2 1.887970E+00 18 4 3 6.984520E-02 

8 1 3 1.266130E+00 19 5 4 8.721020E-03 

9 1 5 1.205730E-01 20 6 3 -4.356730E-03 

10 2 0 -2.813780E-01 21 6 5 -5.932640E-04 

11 2 1 -9.068510E-01         

Thermal conductivity equations 
k(ρ)


∗ = (δ, θ)=0(θ)+1(δ)+2(δ,θ) 

0(θ)=𝜃
0.5∑𝑛𝑖

0

4

𝑖=1

𝜃𝑖−1 

Table  Coefficients of equation    
i 𝑛𝑖

0 

1 0.102811e-1 

2 0.299621e-1 

3 0.156146e-1 

4 -0.422464e-2 

1(δ)=𝑛1 + 𝑛2δ+𝑛3𝑒𝑥𝑝[𝑛4(𝛿 + 𝑛5)
2]    

Table Coefficients of equation  

i ni 

1 0.39707 

2 0.400302 

3 -0.171587e4 

4 -0.239219e1 

2(δ,θ)=(𝑛1𝜃
−10 +𝑛2)𝛿

1.8𝑒𝑥𝑝[𝑛2(1 − 𝛿
2.8)] + 𝑛4𝐴𝛿

𝐵𝑒𝑥𝑝 [(
𝐵

1+𝐵
)(1 − 𝛿1+𝐵)] +

𝑛5𝑒𝑥𝑝[𝑛6𝜃
1.5 + 𝑛7𝛿

−5]    

𝐴(𝜃) = 2 + 𝑛8(∆𝜃)
−0.6 

𝐵(𝜃) = {
(∆𝜃)−1  𝑓𝑜𝑟  𝜃 ≥ 1

𝑛9(∆𝜃)
−0.6  𝑓𝑜𝑟  𝜃 < 1

 3.27b  with   ∆𝜃 = |𝜃 − 1| + 𝑛10 

Table Coefficients of equation  

 i  ni  i  ni 

1 7.013090E-02 6 -4.117170E+00 

2 1.185200E-02 7 -6.179370E+00 

3 6.428570E-01 8 8.229940E-02 

4 1.699370E-03 9 1.009320E+01 

5 -1.020000E+00 10 3.089760E-03 



 

2.2 HEAT TRANSFER EQUATIONS 

Internal flow : 

Water is flowing inside round tubes, Therefore internal flow heat transfer for water will be 

investigated. 

2.2.1 One phase pressure drop 
One phase pressure drop is usually calculates by using Colebrrok-White equations. This equation 

requires root finding, and an initial guess for the root finding process. Goudar-Sonnad equition which 

has the same type of accuracy with Colebrook-White equation but is not required any root finding 

process will be utilised in prossere drop calculations 

Darcy-Weisbach pressure drop formula is given as: 

∆𝑃 = 𝑓
𝐿

𝐷
𝜌
𝑈2

2
  

In this equation ∆𝑃 is the pressure drop, f is the friction factor, L is the length of pipe, U is fluid 

average velocity, D is pipe diameter. Friction factor f  is depends on flow regime. For laminar flow 

(Recritical=2300) Hagen-Poiseuille equation can be used. 

𝑅𝑒 =
𝜌𝑈𝐷

𝜇
  where Re is Reynolds’ number, 𝜇 is dynamic viscosity, D pipe inlet diameter and 𝜌 is the 

density. 

𝑓 =
64

𝑅𝑒
  

For turbulent region Colebrook-White(1937) [4] equation is existed. 
1

√𝑓
= −2𝑙𝑜𝑔10 [

(𝜀/𝐷)

3.7
+

2.51

𝑅𝑒√𝑓
]  

In this equation 𝜀 is called surface roughness.  

 

Goudar- Sonnad equation (2008) Valid region: all values 

𝑎 =
2

ln (10)
  

𝑏 =
(𝜀/𝐷)

3.7
  

𝑑 =
𝑙𝑛(10)

5.02
𝑅𝑒  

𝑠 = 𝑏𝑑 + ln (
𝑑

𝑞
) ;  

𝑞 = 𝑠(
𝑠

𝑠+1
)
 

 𝑔 = 𝑏𝑑 + ln (
𝑑

𝑞
)
        

𝑧 =
𝑞

𝑔
        

𝛿𝐿𝐴 =
𝑔

𝑔+1
𝑧

        
𝛿𝐶𝐹𝐴 = 𝛿𝐿𝐴 (1 +

𝑧/2

(𝑔+1)2+(
𝑧

3
)(2𝑔−1)

) 

 
1

√𝑓
= 𝑎 [𝑙𝑛(

𝑑

𝑞
) + 𝛿𝐶𝐹𝐴]

  
 

2.2.2 inside tube  heat transfer: 
 

Laminar flow 

𝑁𝑢 = 3.66 

Heat transfer equations Fully developed transitional/intermittent region  Ts=const  
Abraham-Sparrow-Tong[34] equation  



𝑁𝑢 = 2.2407 (
𝑅𝑒

1000
)
4
− 29.499(

𝑅𝑒

1000
)
3
+ 142.32 (

𝑅𝑒

1000
)
2
− 292.51 (

𝑅𝑒

1000
) + 219.88       2300 ≤

𝑅𝑒 ≤ 3100 
Abraham recommended Gnilenski equation to be used above Re>3100  
Gnielinski[33] equation 

𝑁𝑢 =
(
𝑓

8
)(𝑅𝑒−1000)𝑃𝑟

1.07+12.7(
𝑓

8
)
.5
(𝑃𝑟

2
3−1)

     0.5 ≤ 𝑃𝑟 ≤ 2000    2300 ≤ 𝑅𝑒 ≤ 5106 

2.2.3 External natural convection: 

Churchill & Chu Equation for all Ra range[36] (valid both turbulent and laminar cases) 

Rayleigh Number: Ra𝑥 = Gr𝑥𝑃𝑟 =
𝑔𝛽(𝑇𝑠−𝑇∞)𝑥

3

α
     α=

𝑘

𝜌𝐶𝑝
 

Critical Rayleigh Number Ra𝑥,𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 10
9 

 

Nu𝐿 = 4/3Nu𝑥   
 

Nu𝐿 = {0.825 +
0.387𝑅𝑎𝐿

1/6

[1+(
0.492

Pr
)
9/16

]
8/27}

2

  

Natural convection heat transfer in channels 

For symmetrical heated, isothermal plates Elenbaas[58] equation is as folows: 

Nu𝑆 = (
𝑞/𝐴

𝑇𝑠−𝑇∞
)
𝑆

𝑘
=

1

24
𝑅𝑎𝑆 (

𝑆

𝐿
) [1 − 𝑒𝑥𝑝 (−

35

𝑅𝑎𝑆(
𝑆

𝐿
)
)]

3/4

  

where Rayleigh Number: Ra𝑆 =
𝑔𝛽(𝑇𝑠−𝑇∞)𝑆

3

α
      10−1 ≤ Ra𝑆 ≤ 10

5 

 
For constant heat flux cases 

Nu𝑆 = (
𝑞"𝑠

𝑇𝑠−𝑇∞
)
𝑆

𝑘
     Ra𝑆

∗ =
𝑔𝛽𝑞"𝑠𝑆

4

kα
  

for symmetric fully developed constant heat flux  

Nu𝑆𝐿 = 0.144[Ra𝑆
∗(𝑆/𝐿]1/2  

for asymmetric fully developed constant heat flux  

Nu𝑆𝐿 = 0.204[Ra𝑆
∗(𝑆/𝐿]1/2  

Bar-Cohen-Rohsenow[59] equation: 

For isothermal plates 



Nu𝑆𝐿 = [
576

(𝑅𝑎𝑆(
𝑆

𝐿
)
2
)
+

2.87

(𝑅𝑎𝑆(
𝑆

𝐿
)
1/2

)
]

−1/2

   10 ≤ Ra𝑆 ≤ 100   𝑇𝑠1 = 𝑇𝑠2  symmetric isothermal 

Nu𝑆𝐿 = [
144

(𝑅𝑎𝑆(
𝑆

𝐿
)
2
)
+

2.87

(𝑅𝑎𝑆(
𝑆

𝐿
)
1/2

)
]

−1/2

   10 ≤ Ra𝑆 ≤ 100   𝑇𝑠1 ,  𝑞𝑠2" = 0 isothermal adiabatic  

 

3. SIMULATION MODELLING 

 
We will consider a single fin and a single pipe section. In this case fin will be exposed  to natural 

convection.  Pipe section will also exposed to natural convection, but different heat transfer equations 

will be used for pipe and fin. Furthermore for fins, fin efficiency should be taken into effect. 

 

𝑑𝑧 =
𝐿

𝑁
 

Where L= pipe length 

N= number of finite difference division 

𝑑𝑄𝑖 = 𝑈𝑖𝑑𝐴𝑖(𝑇𝑤𝑎𝑡𝑒𝑟 − 𝑇𝑎𝑖𝑟) 
1

𝑈𝑖
=

1

ℎ𝑤𝑎𝑡𝑒𝑟 𝑖
+
𝑡𝑝𝑎𝑛𝑒𝑙
𝑘𝑝𝑎𝑛𝑒𝑙

+
1

𝜂𝑓𝑖𝑛 𝑖ℎ𝑎𝑖𝑟 𝑖
 

𝑀 =
2ℎ𝑙𝑓𝑖𝑛
𝑘𝑡𝑓𝑖𝑛

 

𝜂𝑓𝑖𝑛 = (
tanh (𝑀)

𝑀
) 

𝑑𝑄𝑖 = 𝑚𝑤𝑎𝑡𝑒𝑟𝐶𝑝𝑤𝑎𝑡𝑒𝑟(𝑇𝑤𝑎𝑡𝑒𝑟 𝑖)(𝑇𝑤𝑎𝑡𝑒𝑟 𝑖 −𝑇𝑤𝑎𝑡𝑒𝑟 𝑖+1) 

In natural convection air flow rate is difficult parameter,  Velocity profile can be approximated as: 

𝑈𝑎𝑖𝑟 = √2𝑔𝑑𝑧𝛽(𝑇𝑠 −𝑇𝑎𝑖𝑟) 

4. EXPERIMENTAL MEASUREMENTS 
Fin and tube heat exchanger thermal performance measurements are carried out according to EN 442-

2 standard for testing radiators and convectors. According to this standard, Measurements are carried 

out for three different temperature zones 

∆𝑇 = 𝑇𝑚 −𝑇𝑟𝑜𝑜𝑚 = (30 ∓ 2.5)𝐾 

∆𝑇 = 𝑇𝑚 −𝑇𝑟𝑜𝑜𝑚 = (50 ∓ 2.5)𝐾 

∆𝑇 = 𝑇𝑚 −𝑇𝑟𝑜𝑜𝑚 = (60 ∓ 2.5)𝐾 

Where 𝑇𝑚 is the arithmetic average temperature between inlet and exit of water 

𝑇𝑚 =
𝑇𝑤_𝑖𝑛 +𝑇𝑤_𝑜𝑢𝑡

2
 



And 𝑇𝑟𝑜𝑜𝑚 is the room temperatures. Room temperature and experiment wall temperatures should be 

set to a constant temperature of 20 ℃. In order to carry out this test, a laboratuary design with the 

specification of standards is required.  Test results will be fit into a simple curvefitting equation in the 

form of 

𝑄 = �̇�(ℎ𝑤_𝑖𝑛 − ℎ𝑤_𝑜𝑢𝑡) = 𝐾𝑀∆𝑇
𝑛 

Where Q is the heat transfer, �̇� is the mass flow rate of water flowing through radiator,  ℎ𝑤 is the 

water enthalpies at inlet and outlet. 𝐾𝑀 and n are the cırve fitting coefficients obtained as a result of 

experiments. In order to reduce measurements uncertainities, measuremnts of each point should be 

carried out several times (minimum of three times).  A laboratory system according to EN 442-2 is 

developed and a wide range of radiators are measured by using this facility. Measurement results and 

curve fitting coefficients are given in below table. 

 

              Test Raport No: 2022-227 

 
 

  
 

  Test Raport Date: 2.12.2022 

           

Model Name Test date 

S B 

Measuremen points 
  

  

Fin and tube H.E. 
prototype 

2.12.2022 1 2 3 
  

  
Test Measurement info   

  
Air Pressure 

P kPa 101.373 101.316 101.413 
  
  

Referance Air Temperature t  °C 19.968 20.004 20.007 
  
  

  
Water Inlet Temperature 

t1  °C 86.380 74.987 52.406 
  

  

  
Water Outlet Temperature 

t2  °C 73.667 65.012 47.566 
  
  

  
Temperature Difference 

t1-t2  °C 12.713 9.975 4.840 
  

  

  
Inlet Water Enthalpy 

h1 j/kg 361.823 313.974 219.407 
  
  

  
Outlet Water Enthalpy 

h2 j/kg 308.443 272.169 199.165 
  
  

  
Enthalpy Difference 

Δh j/kg 53.380 41.806 20.242 
  
  

  
Mean Water Enthalpy 

tm  °C 80.024 69.999 49.986 
  
  

  
Temperature difference 

Δt  °C 60.056 49.995 29.979 
  
  

  
Water mass flow rate 

qm g/s 21.751 21.751 21.751 
  
  

  
Thermal Output Measured 

Φ W 1161.1 909.3 440.3 
  

  
  
Thermal Output for standard air 
pressure  

Φme W 1166.0 913.5 441.7 
  

  



Km n     
  

  

3.689111471 1.407316089 47 

Δ 60 Δ 50 Δ 30   

1173.1 907.6 442.3 
  

  
          

 

 

In the figures below a standard type radiator measured in the lab is shown. 

 

 

5. PROGRAM DEVELOPMENT & RESULTS 
Computer codes in Java programming language is developed to calculate thermal performance of tube 

and fin heat exchanger. In order to calculate thermodynamic and thermophysical properties of air and 

water, equation of state programs are developed, and then finite difference heat transfer model of heat 

exchanger is developed. The computer classes used in this simulations are as follows: 

Class name  

steamIAPWS_IF97 Steam-water equation of state and thermophysical properties 

air_PG_CS air equation of state (perfect gas) 

HT_pipe_finned_natural Finite difference heat transfer and heat exchanger simulation 

  

Prototype tube-fin heat exchanger has the following properties: 

Water mass flow rate 21.751x10-3 kg/s 

Tube Length 1 m 

Tube diameter 18x10-3 m 

HE Height 160x10-3 m 

HE Width 103.93x10-3 m 

Fin thickness 0.79x10-3 m 

Distance between fins 6.85x10-3 m 

Pipe thickness 0.8x10-3 m 

Number of tubes (connected serial) 12  

Pipe material copper  

Fin material Aliminium  



 

Temperature profile for water inside tubes. 

 

 

 



 

 

 

  Air Pressure P kPa 101.373 101.316 101.413 

  

  Referance Air Temperature (measured and 
simulated) 

t  °C 19.968 20.004 20.007 

  

  
t1  °C 86.380 74.987 52.406 



  

Water Inlet Temperature (measured and 
simulated) 

  Water Outlet Temperature (measured) t2  °C 73.667 65.012 47.566 

  

  Water Flow (measured and simulated) qm g/s 21.751 21.751 21.751 

  

  Thermal Output (measured) Φ W 1161.1 909.3 440.3 

  

  Thermal Output (Corrected) Φme W 1166.0 913.5 441.7 

  

Km n     

 

3.689111471 1.407316089 47 

Δ 60 Δ 50 Δ 30  

1173.1 907.6 442.3 

 

 

  Water outlet Temperature (simulation) t2  °C 73.921 64.824 46.700  

  Thermal Output (simulation) Φsim W 1137.8 925.78 517.91 

 

  
 

  
 

  

 

  
  

   
Water inlet Temperature (simulation)  t1  °C 90 70 50   

  

Water outlet Temperature (simulation) 
 

t2  °C 76.8 60.83 44.76  

  
Room temperature (simulation) t °C 20 20 20  

  Thermal Output (simulation) Φsim W 1204.8 834.4 473.74  

         
 

 

As a result, simulated temperature and heat transfer profile is closely representing the actual measured 

values. The model will be an imporant tool to predict performance and paremeter changes and their 

effects. It can be used as a first estimation toolsmfor this type of heat excahngers. Model used here has 

a specific geometry , bu simialar simualtion models can be developed for different geometries as well. 
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