ULIBTK'21 Uluslararası Katılımlı 23. Isı Bilimi ve Tekniği Kongresi

08-10 Eylül 2021, GAZİANTEP

THERMODYNAMIC AND THERMOPHYSICAL PROPERTIES OF HUMID AIR BY USING SCHREIBER AND PITZER EOS (DRY AIR) AND IAPWS 97 (STEAM)

Mustafa Turhan ÇOBAN

School of Engineering, Department of Mechanical Engineering; Ege University, Bornova, Izmir, Turkey

turhan_coban@yahoo.com

www.turhancoban.com

Süleyman KAVAS

ÜNTES heating air conditioning company inc. • 53. Cad. 1450. Sok. Ulusoy Plaza No: 9/50 06520 Çukurambar – Ankara, Turkey Suleyman.kavas@yahoo.com

1 Abstract: In humid air thermodynamic property calculations, it is usually ideal gas EOS is used. The basic reason for this is simplicity of using ideal gas EOS. For most air condition applications it might be sufficient, but when applications with higher pressure zones and very low temperatures are considered error level will increased. An equation of state with better accuracy of thermodynamic properties will be required for extreme cases. In this study Scheireber-Pitzer equation of state for dry air and IAPWS97 equation for water vapor will be used to establish computer programs in java language to calculate properties of humid air. Scheiber-Pitzer equation of state is a general real gas EoS form that utilized Pitzer's acentricity factor and a modified Benedict Webb-Rubin EoS. It is basically quadratic curve fitting equation to reference fluids by using Pitzer's acentricity factor as a variable. A rich list of curve fitting reference fluids, including hydrocarbons and other gases, are used to obtain curve fitting coefficients. Mixing of air and water is carried out by using real gas mixing equations. Water properties such as saturation vapor pressure, saturation liquid and vapor densities are taken by utilizing IAPWS95 water and steam EOS. Basic thermodynamic and heat-mass transfer equations are used to define properties such as dew point temperature, adiabatic saturation temperature and wet bulb temperature. In order to calculate thermophysical properties such as viscosity, thermal conductivity etc. combination of cubic surface splines and Wilke, Reichenberg... methods are used. Results of developed equations are compared with Ideal gas and IAPWS-97 EOS & IAPWS G8-10 Humid air EOS and Pengrobinson EoS of humid air. A Graphical user interphase is also developed. All the program codes are listed as free access in www.turhancoban.com adress. As subprograms Properties of dry air and pure gas and gas mixtures can also be calculated by using set of Scheireiber-Pitzer EoS programs. All the codes are developed in java programming language.

Keywords: Thermodynamic properties of humid air, Scheireiber-Pitzer EoS, IAPWS97 EoS, thermodynamic properties of dry air, thermophysial properties of humid air

2 Formulation of Equation of State

We will consider Scheiber-Pitzer equation of states for pure gases[19]. Details of the Scheiber-Pitzer EoS is given below.

$$\begin{split} Z &= \frac{P}{\rho RT} = 1 + B(T_r, \rho_r)\rho_r + C(T_r, \rho_r)\rho_r^2 + \\ D(T_r, \rho_r)\rho_r^3 + E(T_r, \rho_r)\rho_r^5 + F(T_r, \rho_r)\rho_r^7 + \\ G(T_r, \rho_r)\rho_r^8 + H(T_r, \rho_r)\rho_r^{10} + I(T_r, \rho_r)\rho_r^{12} \quad (2.1) \\ B(T_r, \rho_r) &= c_1 + \frac{c_2}{T_r} + \frac{c_3}{T_r^2} + \frac{c_4}{T_r^6} \quad (2.2) \\ C(T_r, \rho_r) &= c_5 + \frac{c_5}{T_r} + \frac{c_7}{T_r^3} + \frac{c_8}{T_r^4} \exp(-\rho_r^2) = C_1(T_r) + \\ C_2(T_r) \exp(-\rho_r^2) \quad (2.3) \\ D(T_r, \rho_r) &= c_9 + \frac{c_{10}}{T_r} + \frac{c_{11}}{T_r^2} \quad (2.4) \end{split}$$

$$\begin{split} E(T_r, \rho_r) &= \frac{c_{12}}{T_r^2} + \frac{c_{13}}{T_r^3} \quad (2.5) \\ F(T_r, \rho_r) &= \frac{c_{14}}{T_r^2} + \frac{c_{15}}{T_r^3} \quad (2.6) \\ G(T_r, \rho_r) &= \frac{c_{16}}{T_r^3} + \left(\frac{c_{17}}{T_r^3} + \frac{c_{18}}{T_r^4}\right) \exp(-\rho_r^2) = G_1(T_r) + \\ G_2(T_r) \exp(-\rho_r^2) \quad (2.7) \\ H(T_r, \rho_r) &= \left(\frac{c_{19}}{T_r^3} + \frac{c_{20}}{T_r^4}\right) \exp(-\rho_r^2) = \\ H_2(T_r) \exp(-\rho_r^2) \quad (2.8) \\ I(T_r, \rho_r) &= \left(\frac{c_{21}}{T_r^3} + \frac{c_{22}}{T_r^4}\right) \exp(-\rho_r^2) = I_2(T_r) \exp(-\rho_r^2) \\ (2.9) \\ c_i &= C_{i,0} + C_{i,1}\omega + C_{i,2}\omega^2 \quad (2.10) \end{split}$$

Where ω in Scheiber-Pitzer equation of states coefficient is called **Pitzer's accentric factor**. This factor is calculated as

 $\omega = -log_{10}P_{saturated vapor}(at T_r = 0.7) - 1$ (2.11)

Table 2.1 C[i][j] Coefficients of Scheiber-Pitzer EoS

	j=1	j=2	j=3	
C1,j	0.442259	0.72565	0	
C2,j	-0.98097	0.218714	0	
C3,j	-0.611142	-1.24976	0	
C4,j	-0.00515624	-0.189187	0	
C5,j	0.1513654	2.306706	-10.41174	
C6,j	-0.04382625	4.696068	15.14146	
C7,j	1.102699	3.129384	-9.521409	
C8,j	-0.6361056	0.3266766	2.904622	
C9,j	0.008759626	-3.204099	8.002338	
C10,j	0.3412103	8.872169	-14.40386	
C11,j	-0.8842722	-6.687471	11.76854	
C12,j	0.1375109	0.2432806	-0.5515101	
C13,j	-0.1443457	1.286932	-2.180988	
C14,j	-0.00596955	0.04541961	0	
C15,j	0.02450537	-0.4158241	0.7914067	
C16,j	-0.00419959	0.0910596	-0.1786378	
C17,j	0.000466548	-1.262028	-2.826772	
C18,j	-0.01945101	0.781222	4.190046	
C19,j	0.04083643	1.398844	0	
C20,j	-0.03546917	-1.456041	0	
C21,j	-	0.2104505	0	
C22,j	0.005896265	0.2191255	0	

Derivatives of the equations:

$$\begin{aligned} \frac{\partial B(T_{r,\rho_{r}})}{\partial T} &= \frac{1}{T_{c}} \left[-\frac{c_{2}}{T_{r}^{2}} - 2\frac{c_{3}}{T_{r}^{3}} - 6\frac{c_{4}}{T_{r}^{7}} \right] \quad (2.12) \\ \frac{\partial C(T_{r,\rho_{r}})}{\partial T} &= \frac{1}{T_{c}} \left[-\frac{c_{5}}{T_{r}^{2}} - 3\frac{c_{7}}{T_{r}^{4}} - 4\frac{c_{8}}{T_{r}^{5}}\exp(-\rho_{r}^{2}) \right] \quad (2.13) \\ \frac{\partial D(T_{r,\rho_{r}})}{\partial T} &= \frac{1}{T_{c}} \left[-\frac{c_{10}}{T_{r}^{2}} - 3\frac{c_{11}}{T_{r}^{4}} \right] \quad (2.14) \\ \frac{\partial E(T_{r,\rho_{r}})}{\partial T} &= \frac{1}{T_{c}} \left[-\frac{c_{12}}{T_{r}^{2}} - 3\frac{c_{13}}{T_{r}^{4}} \right] \quad (2.15) \\ \frac{\partial F(T_{r,\rho_{r}})}{\partial T} &= \frac{1}{T_{c}} \left[-2\frac{c_{14}}{T_{r}^{3}} - 3\frac{c_{13}}{T_{r}^{4}} \right] \quad (2.16) \\ \frac{\partial G(T_{r,\rho_{r}})}{\partial T} &= \frac{1}{T_{c}} \left[-3\frac{c_{16}}{T_{r}^{4}} + \left(-3\frac{c_{17}}{T_{r}^{4}} - 4\frac{c_{18}}{T_{r}^{5}} \right) \exp(-\rho_{r}^{2}) \right] \\ (2.17) \\ \frac{\partial H(T_{r,\rho_{r}})}{\partial T} &= \frac{1}{T_{c}} \left[\left(-3\frac{c_{19}}{T_{r}^{4}} - 4\frac{c_{18}}{T_{r}^{5}} \right) \exp(-\rho_{r}^{2}) \right] \quad (2.18) \\ \frac{\partial I(T_{r,\rho_{r}})}{\partial T} &= \frac{1}{T_{c}} \left[\left(-3\frac{c_{21}}{T_{r}^{4}} - 4\frac{c_{22}}{T_{r}^{5}} \right) \exp(-\rho_{r}^{2}) \right] \quad (2.19) \end{aligned}$$

Helmholtz energy equation will be used to predict other thermodynamic properties

$$\begin{aligned} dA &= -SdT - Pdv \ (2.20) \\ \frac{\partial A}{\partial v}\Big|_{T} &= -P \ (2.21) \\ dA &= -Pdv = \frac{P}{\rho^{2}}d\rho \ (2.22) \\ A - A_{0} &= \int_{\rho_{0}}^{\rho} \frac{P}{\rho^{2}}d\rho = \int_{0}^{\rho} \frac{P}{\rho^{2}}d\rho + \int_{\rho_{0}}^{0} \frac{P}{\rho^{2}}d\rho = \int_{0}^{\rho} \frac{P}{\rho^{2}}d\rho + \\ \int_{\rho_{0}}^{0} \frac{\rho RT}{\rho^{2}}d\rho \ (2.23) \end{aligned}$$

The second term (limits between low density ρ_0 and density 0) can be defined as an ideal state case where $P = \rho RT$. Now we can add and substract ideal gas density term of the equation

$$\begin{aligned} A - A_0 &= \int_{\rho_0}^{\rho} \frac{P}{\rho^2} d\rho = \int_0^{\rho} \frac{P}{\rho^2} d\rho + \int_{\rho_0}^{0} \frac{\rho RT}{\rho^2} d\rho + \\ \int_0^{\rho} \frac{\rho RT}{\rho^2} d\rho - \int_0^{\rho} \frac{\rho RT}{\rho^2} d\rho \ (2.24) \end{aligned}$$

Considering for real EoS $P = Z\rho RT$ equation becomes

$$A - A_{0} = \int_{\rho_{0}}^{\rho} \frac{P}{\rho^{2}} d\rho = \int_{0}^{\rho} \frac{P}{\rho^{2}} d\rho + \int_{\rho_{0}}^{0} \frac{\rho RT}{\rho^{2}} d\rho + \int_{0}^{\rho} \frac{\rho RT}{\rho^{2}} d\rho - \int_{0}^{\rho} \frac{\rho RT}{\rho^{2}} d\rho$$
$$A - A_{0} = \int_{0}^{\rho} \frac{Z\rho RT - \rho RT}{\rho^{2}} d\rho + \int_{\rho_{0}}^{\rho} \frac{\rho RT}{\rho^{2}} d\rho$$
$$A - A_{0} = \int_{0}^{\rho} \frac{RT(Z - 1)}{\rho} d\rho + \int_{\rho_{0}}^{\rho} \frac{\rho RT}{\rho^{2}} d\rho$$

 $\begin{aligned} A - A_0 &= \int_0^{\rho_r} \frac{RT}{\rho_r} [B(T_r, \rho_r)\rho_r + C(T_r, \rho_r)\rho_r^2 + \\ D(T_r, \rho_r)\rho_r^3 + E(T_r, \rho_r)\rho_r^5 + F(T_r, \rho_r)\rho_r^7 + G(T_r, \rho_r)\rho_r^8 + \\ H(T_r, \rho_r)\rho_r^{10} + I(T_r, \rho_r)\rho_r^{12}]d\rho_r + \int_{\rho_{r_0}}^{\rho_r} \frac{RT}{\rho_r} d\rho_r \quad (2.25) \end{aligned}$

$$A - A_0 = RT \int_0^{\rho_r} [B(T_r, \rho_r) + C(T_r, \rho_r)\rho_r + D(T_r, \rho_r)\rho_r^2 + E(T_r, \rho_r)\rho_r^4 + F(T_r, \rho_r)\rho_r^6 + G(T_r, \rho_r)\rho_r^7 + H(T_r, \rho_r)\rho_r^9 + I(T_r, \rho_r)\rho_r^{-11}]d\rho_r + RT ln \frac{\rho_r}{\rho_{r_0}}$$
(2.26)

Some of the terms in this integration includes terms of exponential and power multiplications. This integrations are carried out as follows:

$$K(m,\rho_r) = \int_0^{\rho_r} \rho_r^m \exp(-\rho_r^2) d\rho_r = \int_0^{\rho_r} \sum_{n=0}^{\infty} (-1)^n \frac{\rho_r^{2n+m}}{n!} d\rho_r = \sum_{n=0}^{\infty} (-1)^n \frac{\rho_r^{2n+m+1}}{(2n+m+1)n!}$$
(2.27)

Handling these terms such as above Taylor series are much easier than taken numerical integration, then Helmholtz departure function becomes:

$$A - A_{0} = RT \left(B\rho_{r} + C_{1} \frac{\rho_{r}^{2}}{2} + C_{2}K(1,\rho_{r}) + D \frac{\rho_{r}^{3}}{3} + E \frac{\rho_{r}^{5}}{5} + F \frac{\rho_{r}^{7}}{7} + G_{1} \frac{\rho_{r}^{3}}{8} + G_{2}, K(8,\rho_{r}) + H_{2}K(10,\rho_{r}) + I_{2}K(12,\rho_{r}) \right) + RT ln \left(\frac{\rho_{r}}{\rho_{r0}} \right)$$
(2.28)

4 11

Entropy departure function:

$$S - S_{0} = -\frac{\partial(A - A_{0})}{\partial T}\Big|_{\rho}$$

$$S - S_{0} = R\left(B\rho_{r} + C_{1}\frac{\rho_{r}^{2}}{2} + C_{2}K(1,\rho_{r}) + D\frac{\rho_{r}^{3}}{3} + E\frac{\rho_{r}^{5}}{5} + F\frac{\rho_{r}^{5}}{8} + G_{1}\frac{\rho_{r}^{2}}{9} + G_{2}, K(8,\rho_{r}) + H_{2}K(10,\rho_{r}) + I_{2}K(12,\rho_{r})\right) + RT\left(\frac{dB}{dT}\rho_{r} + \frac{dC_{1}}{dT}\frac{\rho_{r}^{2}}{2} + \frac{dC_{2}}{dT}K(1,\rho_{r}) + \frac{dD}{dT}\frac{\rho_{r}^{3}}{3} + \frac{dE}{dT}\frac{\rho_{r}^{5}}{5} + \frac{dF}{dT}\frac{\rho_{r}^{8}}{8} + \frac{dG_{1}}{dT}\frac{\rho_{r}^{9}}{9} + \frac{dG_{2}}{dT}K(8,\rho_{r}) + \frac{dH_{2}}{dT}K(10,\rho_{r}) + \frac{dI_{2}}{dT}K(12,\rho_{r})\right) + Rln\left(\frac{\rho_{r}}{\rho_{r0}}\right) \quad (2.29)$$

Enthalpy departure function:
$$H = H_{r} = (A - A_{r}) + T(S - S_{r})$$

$$\begin{array}{c} H = H_0 = (A - A_0) + I(S - S_0) \\ + RT(Z - 1) \quad (2.30) \end{array}$$

Internal energy departure function: $U - U_0 = (A - A_0) + T(S - S_0)$ (2.31) Gibbs energy departure function:

$$G - G_0 = (A - A_0) + RT(Z - 1) \quad (2.32)$$

The fugacity-pressure ratio:
$$ln\frac{f}{P} = \frac{(A - A_0)}{RT} + ln\frac{v}{v_0} + (Z - 1) - \ln(Z) \quad 2.33$$

Data is also needed to solve $C_p(T)$ value. In order to establish that, NIST tables given at the adress <u>https://janaf.nist.gov/</u> is used. The following partial continious formulation is taken. the following partial difference curve fitting formula is used

$$C_{pi}(T) = A_i + B_i 10^{-3}T + \frac{C_i 10^5}{T^2} + D_i 10^{-6}T^2$$

$$T_{Li} \le T \le T_{Hi} \qquad (2.34)$$

As an example case of Partial continuous curve fitting of Cp values Data for Nitrogen is given below.

Figure 2.2 Error of Cp in Nitrogen kJ/(kmolK) Table 2.2 Cp (kJ/kmol K) partial continious curve fitting equations for N₂ Nitrogen

i	Ai	Bi	Ci	Di	$T_{li} \ K$	$T_h i \; K \\$
0	29.408631	-2.251447	-0.012473	4.520889	100	350
1	27.646169	0.882356	0.770074	4.764423	350	700
2	21.601706	14.878414	3.812808	-4.165467	700	1200
3	29.830766	5.421561	-15.043096	-1.089614	1200	1700
4	35.476742	0.973583	-42.547627	-0.097466	1700	2200
5	34.928203	1.319404	-38.184192	-0.159911	2200	2700
6	36.262526	0.581500	-50.898362	-0.045731	2700	3200
7	35.657341	0.766169	-34.665936	-0.059817	3200	3700
8	36.418045	0.432596	-44.184706	-0.020152	3700	4200
9	38.077688	-0.152960	-80.311808	0.036794	4200	4700
10	37.760284	-0.049949	-73.101156	0.027769	4700	5200
11	39.973855	-0.854555	-77.575938	0.101253	5200	6000

For some gases only data is available is in polynomial curve fitting format, for this cases polynomial form is assumed.

$$C_{pi}(T) = \sum_{i=0}^{n} A_i T^i$$
 (2.35)

Mixing of the gases: Pseudocritical property approach will be used. According to this concept a pseudocritical properties of the gas mixtures are calculated and then gas mixture can be evaluated similar to a single gas equation. Mixing rules for a Schereiber-Pitzer mix is given as follows:

$$N = \sum_{i} N_i \quad (2.36)$$

Where N_i is mole number of each substance in the mixture.

$$y_i = \frac{N_i}{N} \quad (2.37)$$

Where y_i is mole percentages of each substance.

$$T_{c} = \frac{1}{v_{c}^{1/4}} \sum_{i} \sum_{j} y_{i} y_{j} v_{cij}^{1/4} T_{cij} \quad (3.38)$$

Where T_c is pseudo-critical temperature of mixture. Due to charecteristic of mixture there is no one critical temperature but critical temperature of each species in the mixture, therefore this value does not have a physical significance and only for calculation purposes.

$$v_c = \sum_i \sum_j y_i y_j v_{cij} \quad (2.39)$$

Where v_c is pseudocritical specific volume

$$\omega = \sum_{i} y_i \omega_i \quad (3.36)$$

Where ω is Pitzer's acentric factor of the mixture

 $k'_{ii} =$

$$T_{cij} = (T_{ci}T_{cj})^{1/2}k'_{ij} \quad (2.40)$$

$$\frac{8(v_{ci}v_{cj})}{\left(v_{ci}^{1/3}+v_{cj}^{1/3}\right)^3}$$
(2.41)

 k'_{ij} is binary interaction coefficients. Due to difference of molecules in the mixture and intermolecular forces effecting because of the difference. This equation will give only approximation. The exact value can only be obtain by experimental measurements of mixture of two gases.

$$\begin{aligned} v_{cij} &= \frac{1}{8} \left(v_{ci}^{1/3} + v_{cj}^{1/3} \right)^3 \ (2.42) \\ Z_c &= \left(0.2905 - 0.085 \omega \right) \ (2.43) \end{aligned}$$

Where Z_c is pseudo-critical compressibility factor. As it is seen from the equation, it is given only as a function of Pitzer's acentric factor.

$$P_c = Z_c R T_c / v_c \ (2.44)$$

Where Z_c is pseudo-critical pressure.

Thermodynamic properties of dry air is calculated by using gas mixture and assuming dry air as a gas mixture as:

gas	Formula	Mole %
Nitrogen	N_2	78.12
Oxygen	O ₂	20.96
Argon	Ar	0.92

For the steam calculations class steamIAPWS_IF97 is used. Details of these equation of state is as follows: International Association for the Properties of Water and Steam(IAPWS) is developed a new set of equation of states for industrail use. This new set of equations are developed in 1997. Steam properties are given by 5 sets of equation of states, as shown in the Figure 2.11

Figure 2.3 Zone definitions for different sub EOS for IAPWS-IF97

The first equation, which covers basically **liquid region** has the following gibbs free energy form:

$$\frac{g_1(P,T)}{RT} = \gamma(\pi,\tau) = \sum_{i=1}^{34} n_i (71 - \pi)^{I_i} (\tau - 1222)^{J_i} (2.45)$$

Where $\pi = \frac{p}{p^*}$, $\tau = \frac{T^*}{T}$, $p^{*=16.62}$ MPa and $T^{*=1386}$ K R=0461526 kJ/(kgK)

$i \hspace{0.5cm} I_i \hspace{0.5cm} J_i \hspace{0.5cm} n_i \hspace{0.5cm} i \hspace{0.5cm} I_i$	Т	able 2.	3 coet	ficients of e	qn. 2.	45	
		i Ii	$\mathbf{J}_{\mathbf{i}}$	ni	i	Ii	J

1	li	Ji	ni	1	li	J_i	ni
1	0	-2	0.146329712	18	2	3	-4.41418E-06
2	0	-1	-0.845481872	19	2	17	-7.26950E-16
3	0	0	-3.756360367	20	3	-4	-3.16796E-05
4	0	1	3.385516917	21	3	0	-2.82708E-06
5	0	2	-0.957919634	22	3	6	-8.52051E-10
6	0	3	0.157720385	23	4	-5	-2.24253E-06
7	0	4	-0.016616417	24	4	-2	-6.51712E-07
8	0	5	0.000812146	25	4	10	-1.43417E-13
9	1	-9	0.000283191	26	5	-8	-4.05170E-07
10	1	-7	-0.000607063	27	8	-11	-1.27343E-09
11	1	-1	-0.018990068	28	8	-6	-1.74249E-10
12	1	0	-0.032529749	29	21	-29	-6.87621E-19
13	1	1	-0.021841717	30	23	-31	1.44783E-20
14	1	3	-5.28384E-05	31	29	-38	2.63358E-23
15	2	-3	-0.000471843	32	30	-39	-1.19476E-23
16	2	0	-0.000300018	33	31	-40	1.82281E-24
17	2	1	4.76614E-05	34	32	-41	-9.35371E-26

Thermodynamic relations can be calculated from these thermodynamic relations

Specific volume:
$$v = \left(\frac{\partial g}{\partial P}\right)_T (2.46)$$

Specific enthalpy: $h = g - T \left(\frac{\partial g}{\partial T}\right)_p$ (2.47) Specific internal energy: $u = g - T \left(\frac{\partial g}{\partial T}\right)_p - P \left(\frac{\partial g}{\partial P}\right)_T$ (2.48) Specific entropy: $s = \left(\frac{\partial g}{\partial T}\right)_p$ (2.49) Specific isobaric heat capacity: $C_p = \left(\frac{\partial h}{\partial T}\right)_p$ (2.50) Specific isochoric heat capacity: $C_v = \left(\frac{\partial u}{\partial T}\right)_v$ (2.51) The second equation equation, which covers vapor region has the following gibbs free energy form: $\frac{g_2(P,T)}{RT} = \gamma(\pi,\tau) = \gamma^0(\pi,\tau) + \gamma^r(\pi,\tau)$ (2.52) Where $\pi = \frac{P}{P^*}$ $\tau = \frac{T^*}{T}$ R=0.461526 kJ/(kgK), $\gamma^0(\pi,\tau)$ is the ideal gas part of EOS, and $\gamma^r(\pi,\tau)$ is the real gas part of the EOS. Ideal gas part equation: $\gamma^0(\pi,\tau) = \ln(\pi) + \sum_{i=1}^{9} n_i^0 \tau^{J_i}$ (2.53) Where $p^*=1$ MPa and $T^*=540$ K

Table 2.4 coefficients of eqn. 2.52

i	\mathbf{J}_{i}	n_i^0	i	\mathbf{J}_{i}	n_i^0
1	0	-9.6928E+00	6	-2	1.4241E+00
2	1	1.0087E+01	7	-1	-4.3840E+00
3	-5	-5.6088E-03	8	2	-2.8409E-01
4	-4	7.1453E-02	9	3	2.1268E-02
5	-3	-4.0710E-01			

dimensionless residual part of the basic equation g2(p,T) is as follows:

$$\gamma^{r}(\pi, \tau) = \sum_{i=1}^{43} n_{i} \pi^{I_{i}} (\tau - 0.5)^{J_{i}}$$
 (2.53)
Where p*=1MPa and T*=540 K
Table 2.5 coefficients of eqn. 2.53

i	Ii	\mathbf{J}_{i}	ni	i	Ii	\mathbf{J}_{i}	ni
1	1	0			7	0	-5.9060E-18
2	1	1	-1.78349E-02	24	7	11	-1.2622E-06
3	1	2	-4.59960E-02	25	7	25	-3.8947E-02
4	1	3	-5.75813E-02	26	8	8	1.1256E-11
5	1	6	-5.03253E-02	27	8	36	-8.2311E+00
6	2	1	-3.30326E-05	28	9	13	1.9810E-08
7	2	2	-1.89490E-04	29	10	4	1.0407E-19
8	2	4	-3.93928E-03	30	10	10	-1.0235E-13
9	2	7	-4.37973E-02	31	10	14	-1.0018E-09
10	2	36	-2.66745E-05	32	16	29	-8.0883E-11
11	3	0	2.04817E-08	33	16	50	1.0693E-01
12	3	1	4.38707E-07	34	18	57	-3.3662E-01
13	3	3	-3.22777E-05	35	20	20	8.9186E-25
14	3	6	-1.50339E-03	36	20	35	3.0629E-13
15	3	35	-4.06683E-02	37	20	48	-4.2002E-06
16	4	1	-7.88473E-10	38	21	21	-5.9056E-26
17	4	2	1.27907E-08	39	22	53	3.7827E-06
18	4	3	4.82254E-07	40	23	39	-1.2769E-15
19	5	7	2.29221E-06	41	24	26	7.3088E-29
20	6	3	-1.67148E-11	42	24	40	5.5415E-17
21	6	16	-2.11715E-03	43	24	58	-9.4370E-07
22	6	35	-2.38957E+01				

Region 3 equation is given as Helmholts free energy form:

$\frac{f_3(\rho,T)}{RT}$ (2.54)	$=\phi(\delta,\tau)$	$= n_1 \ln$	n(δ) + $\sum_{i=2}^{40} n_i \delta^{I_i}$	iτ ^J i	
Where	$\delta = \frac{\rho}{\rho^*}$	$\tau = \frac{T^*}{T}$,	$T^*=T_c=647.096$	and	

R=0.461526 kJ/(kgK)

Table 2.6 coefficients of eqn. 2.54

i	Ii	J_i	ni	i	I_i	J_i	ni	able 2	. / coe
1	0	0	1.0658E+00	21	3	4	-2.0190E+00	i	ni
2	0	0	-1.5733E+01	22	3	16	-8.2148E-03	1	1 1670
3	0	1	2.0944E+01	23	3	26	-4.7596E-01	-	1.1070
4	0	2	-7.6868E+00	24	4	0	4.3984E-02	2	-7.242
5	0	7	2.6186E+00	25	4	2	-4.4476E-01	3	-1.707
6	0	10	-2.8081E+00	26	4	4	9.0572E-01	4	1 2020
7	0	12	1.2053E+00	27	4	26	7.0522E-01		1.2020
8	0	23	-8.4567E-03	28	5	1	1.0771E-01	5	-3.232
9	1	2	-1.2654E+00	29	5	3	-3.2914E-01		
10	1	6	-1.1524E+00	30	5	26	-5.0871E-01 I	t is a	lso po
11	1	15	8.8521E-01	31	6	0	-2.2175E-02 €	eqautio	n from
12	1	17	-6.4208E-01	32	6	2	9.4261E-02	Γ_s	
13	2	0	3.8493E-01	33	6	26	1.6436E-01 7	*	
14	2	2	-8.5215E-01	34	7	2	-1.3503E-02	n_{10} -	D -
15	2	6	4.8972E+00	35	8	26	-1.4834E-02	_	
16	2	7	-3.0503E+00	36	9	2	5.7923E-04	Where	$T^{*}=1 H$
17	2	22	3.9421E-02	37	9	26	3.2309E-03		
18	2	26	1.2558E-01	38	10	0	8.0965E-05		
19	3	0	-2.7999E-01	39	10	1	-1.6558E-04		
20	3	2	1.3900E+00	40	11	26	-4.4924E-05		

It should be noted that this set of equation is function of density and temperature, and basic equation is helmholts equation so, let us list definition of other thermodynamic properties

Pressure: $P = \rho^2 \left(\frac{\partial f}{\partial \rho}\right)_T (2.55)$ Specific enthalpy: $h = f - T \left(\frac{\partial f}{\partial T}\right)_p + \rho \left(\frac{\partial f}{\partial \rho}\right)_T (2.56)$ Specific internal energy: $u = f - T \left(\frac{\partial f}{\partial T}\right)_p (2.57)$ Specific entropy: $s = \left(\frac{\partial f}{\partial T}\right)_p (2.58)$ Specific isobaric heat capacity: $C_p = \left(\frac{\partial h}{\partial T}\right)_p (2.59)$

Specific isochoric heat capacity: $C_v = \left(\frac{\partial u}{\partial T}\right)_v (2.60)$

Region 4 of the equation defines saturation region. The basic equation is given as a polynomial Region 4 of the equation defines saturation region. The basic equation is given as a polynomial

$$\beta^2 \vartheta^2 + n_1 \beta^2 \vartheta + n_2 \beta^2 + n_3 \beta \vartheta^2 + n_4 \beta \vartheta + n_5 \beta + n_6 \vartheta^2 + n_7 \vartheta + n_8 = 0 \quad (2.61)$$

Where

$$\beta = \left(\frac{P_s}{P^*}\right)^{0.25} (2.62)$$

$$\vartheta = \frac{T_s}{T^*} + \frac{n_9}{\left(\frac{T_s}{T^*}\right) - n_{10}} (2.63)$$

From this equation both saturation pressure and saturation temperature equation can be derived.

$$\frac{P_S}{P^*} = \left[\frac{2C}{-B + (B^2 - 4AC)^{0.5}}\right]^4 (2.64)$$
Where P*=1 MPa
 $A = \vartheta^2 + n_1\vartheta + n_2$
 $B = n_3\vartheta^2 + n_4\vartheta + n_5$
 $C = n_6\vartheta^2 + n_7\vartheta + n_8$
Table 2.7 coefficients of eqn. 2.64

i	n _i	i	n _i
1	1.16705E+03	6	1.49151E+01
2	-7.24213E+05	7	-4.82327E+03
3	-1.70738E+01	8	4.05113E+05
4	1.20208E+04	9	-2.38556E-01
5	-3.23256E+06	10	6.50175E+02

It is also possible to drive saturation temperature eqaution from the basic polynomial as:

$$D - [(n_{10} + D)^{2} - 4(n_{9} + n_{10}D)]^{0.5}$$

$$T^{*}=1 \text{ K}$$

$$D = \frac{2G}{-F - (F^{2} - 4EG)^{0.5}}$$

$$E = \beta^{2} + n_{3}\beta + n_{6}$$

$$F = n_{1}\beta^{2} + n_{4}\beta + n_{7}$$

$$G = n_{2}\beta^{2} + n_{5}\beta + n_{8}$$
(2.65)

And the final region for steam is region 5, again given as gibbs free equation type EOS

$$\frac{g_5(P,T)}{RT} = \gamma(\pi,\tau) = \gamma^0(\pi,\tau) + \gamma^r(\pi,\tau)$$
(2.66)

Where $\pi = \frac{P}{P^*}$ $\tau = \frac{T^*}{T}$ R=0.461526 kJ/(kgK), $\gamma^0(\pi, \tau)$ is the ideal gas part of EOS, and $\gamma^r(\pi, \tau)$ is the real gas difference of the EOS. Ideal gas part equation: $\gamma^0(\pi, \tau) = \ln(\pi) + \sum_{i=1}^9 n_i^0 \tau^{J_i}$ (2.6.24)

Where
$$p^*=1$$
MPa and $T^*=1000$ K

Table 2.8 coefficients of eqn. 2.66

i	$J_i{}^0$	n_i^0	i	$J_i{}^0$	n_i^0
1	0	-13.17998367	4	-2	0.36901535
2	1	6.854084163	5	-1	-3.116131821
3	-3	-0.024805149	6	2	-0.329616265

The real gas part of the equation $\gamma^r(\pi, \tau) = \sum_{i=1}^{43} n_i \pi^{I_i} \tau^{J_i}$ (2.

$$\sum_{i=1}^{n} n_i \pi^{r_i} \tau^{r_i}$$
(2.67)
Table 2.8 coefficients of eqn. 2.67

i	\mathbf{I}_{i}	\mathbf{J}_{i}	n _i	i	\mathbf{I}_{i}	$\mathbf{J}_{\mathbf{i}}$	n _i
1	1	1	1.57364E-03	4	2	3	2.24400E-06
2	1	2	9.01538E-04	5	2	9	-4.11633E-06
3	1	3	-5.02701E-03	6	3	7	3.79195E-08

At reference [8] more detailed set of equations are given for this calculations, for example reverse equation sets are given so that instead of additional curve fitting to get the variables this additional sets can be utilized A program in java (steamIAPWS_IF97) is prepared to use this set of EOS. A user interface is also prepared (steamTableIF97.java). The user interface input frame is given in the following figure.

Figure 2.12 GUI for thermodynamic properties of steam

Equations for humid air:

$$h^{AV}(A,T,\rho) = (1-A)h^{V}(T,\rho^{V}) + Ah^{A}(T,\rho^{A})$$
(2.68)
 $s^{AV}(A,T,\rho) = (1-A)s^{V}(T,\rho^{V}) + As^{A}(T,\rho^{A})$
(2.69)

3. Additional Formulations

As a gas mixture, usually utilised in air conditioning industry, definitions used in standart air conditioning industry should also be expressed. Some of these properties are:

Humidity ratio $w = \left(\frac{1}{A}\right) - 1$ (3.1)

Mole fraction of dry air $x_A = \frac{A(M_W/M_A)}{1 - A[1 - (M_W/M_A)]}$ (3.2)

Mole fraction of water: $1 - x_A$ (3.3)

Mass fraction of dry air: $A = \frac{x_A}{1 - (1 - x_A)[1 - (M_W/M_A)]}$ (3.4)

Partial pressure of water: $P^W = (1 - x_A)P$ (3.5) Partial pressure of saturated water: $P^{Wsat} = (1 - x_A^{sat})P = P_{\sigma}(T)$ (3.6)

Relative humidity: $RH = \frac{P^W}{P^{Wsat}} = \frac{(1-x_A)}{(1-x_A^{sat})}$ (3.7) Degree of saturation $DOS = \frac{m^W}{m^{Wsat}} = \frac{1-A}{1-A^{sat}}$ (3.8) Dew point temperature (saturation temperature at partial pressure of water) $T_{\sigma}(P^W) = T_{\sigma}((1-x_A)P)$ (3.9)

Another concept used for wet air is adyabatic saturation temperature. If air flow through an infinite length channel filled with water at the bottom and all walls are insulated, it will absorb water and will be reached to adyabatic saturation point. The temparature of adyabatic saturation point is also called wet air temperature, it is an idealised thermodynamic concept and can be calculated from the energy balance of the infinitely long channel. Basic energy equation:

Energy of the air entering the channel = enegy of the air leaving the channel + energy of evaporated water,

Figure 2.1 Adiabatic saturation temperature

So $m_a h(A, T, P) + m_l h_{water}^*(T^*, P) =$ $m_a h(A^*, T^*, P)$ (3.10) $m_l = m_a(w^* - w) = m_a \left(\frac{1}{A^*} - \frac{1}{A}\right)$ (3.11) $h(A, T, P) + \left(\frac{1}{A^*} - \frac{1}{A}\right) h_{water}^*(T^*, P) = h(A^*, T^*, P)$ (3.12)

Since the exit is at saturation state relative humidity at exit is 1 so

$$RH = \frac{P^W}{P^{Wsat}} = \frac{(1 - x_A)}{(1 - x_A^{sat})} = 1.0 \qquad (3.13)$$

Solution of these equations will require root finding methods.

In order to calculate thermopysical properties (thermal conductivity and viscosity) of dry air Kadoya et al[1] equations are used. This equations has the following form:

$$\begin{split} \eta_{0}(T_{r}) &= A_{0}T_{r} + A_{1}T_{r}^{0.5} + A_{2} + \frac{A_{3}}{T_{r}} + \frac{A_{4}}{T_{r}^{2}} + \frac{A_{5}}{T_{r}^{3}} + \frac{A_{6}}{T_{r}^{4}} \\ (3.14) \\ \Delta\eta(\rho_{r}) &= \sum_{i=1}^{4} B_{i}\rho_{r}^{i} (3.15) \\ | (T_{r},\rho_{r}) &= H[\eta_{0}(T_{r}) + \Delta\eta(\rho_{r})] (3.16) \\ k_{0}(T_{r}) &= C_{0}T_{r} + C_{1}T_{r}^{0.5} + C_{2} + \frac{C_{3}}{T_{r}} + \frac{C_{4}}{T_{r}^{2}} + \frac{C_{5}}{T_{r}^{3}} + \frac{C_{4}}{T_{r}^{4}} \\ (3.17) \\ \Delta k(\rho_{r}) &= \sum_{i=1}^{4} D_{i}\rho_{r}^{i} (3.18) \\ k(T_{r},\rho_{r}) &= \Lambda[k_{0}(T_{r}) + \Delta k(\rho_{r})] (3.19) \\ Where \\ \rho_{r} &= \frac{\rho}{\rho^{*}} T_{r} = \frac{T}{T^{*}} T^{*} = 132.5 K \rho^{*} = 314.3 \frac{\text{kg}}{\text{m}^{3}} \\ \Lambda &= 25.9778 \left(\frac{10^{-3}W}{mK}\right) \quad \text{H} = 6.1609 (10 - 6 \text{ Pas}) \\ (3.20) \end{split}$$

Coefficients of the equations are given in Table 3.1

Table 3.1 Coefficients of equations 3.14-3.19

i	Ai	B _i	Ci	Di
0	0.128517	0.465601	0.239503	0.402287

1	2.60661	1.26469	0.00649768	0.356603
2	-1	-0.511425	1	-0.163159
3	-0.709661	0.2746	-1.92615	0.138059
4	0.662534		2.00383	-0.0201725
5	-0.197846		-1.07553	
6	0.00770147		0.229414	

In order to both check and error control purposes a surface cubic spline curve fitting equavalent formulation is also created. The data for curve fitting based on NIST data for thermal conductivity and viscosity for dry air. Viscosity and thermal conductivity values are taken from IAPWS Industrial Formulation 1997[15]. This equations are as follows:

Viscosity equations:

 $\eta(\rho,T) = \psi(\delta,\theta) = \eta^* \big[\psi_0(\theta) \psi_1(\delta,\theta) \big] \qquad 3.21$

Where $\eta^* = 10^{-6} Pas$ $\delta = \frac{\rho}{\rho^*}$ $\theta = T/T^*$

with $T^* = T_c = 647.096 \ K \ \rho^* = \rho_c = 322 \ kg/m^3$

 $\psi_0(\theta) = \theta^{0.5} [\sum_{i=1}^4 n_i^0 \theta^{1-i}]^{-1}$ 3.22 Coefficients of equation given below:

Table 3.2 Coefficients of equation 3.22

i	n_i^0
1	0.167752e-1
2	0.220462e-1
3	0.6366564e-2
4	-0.241605e-2
	Г

$$\Psi_1(\delta,\theta) = \exp\left[\delta\sum_{i=1}^{21} n_i \left(\delta - 1\right)^{I_i} \left(\frac{1}{\theta} - 1\right)^{J_i}\right] \quad 3.23$$

Table 3.3 Coefficients of equation 3.23

i	Ii	$\mathbf{J}_{\mathbf{i}}$	Ni	i	Ii	Ji	Ni
1	0	0	5.200940E-01	12	2	2	-7.724790E-01
2	0	1	8.508950E-02	13	2	3	-4.898370E-01
3	0	2	-1.083740E+00	14	2	4	-2.570400E-01
4	0	3	-2.895550E-01	15	3	0	1.619130E-01
5	1	0	2.225310E-01	16	3	1	2.573990E-01
6	1	1	9.991150E-01	17	4	0	-3.253720E-02
7	1	2	1.887970E+00	18	4	3	6.984520E-02
8	1	3	1.266130E+00	19	5	4	8.721020E-03
9	1	5	1.205730E-01	20	6	3	-4.356730E-03
10	2	0	-2.813780E-01	21	6	5	-5.932640E-04
11	2	1	-9.068510E-01				

Thermal conductivity equations

$$\frac{\mathbf{k}(\boldsymbol{\rho},\mathbf{T})}{\lambda^*} = \Lambda(\boldsymbol{\delta},\boldsymbol{\theta}) = \Lambda_0(\boldsymbol{\theta}) + \Lambda_1(\boldsymbol{\delta}) + \Lambda_2(\boldsymbol{\delta},\boldsymbol{\theta}) \quad (3.24)$$
$$\Lambda_0(\boldsymbol{\theta}) = \boldsymbol{\theta}^{0.5} \sum_{i=1}^4 n_i^0 \ \boldsymbol{\theta}^{i-1} \quad (3.25)$$

Table 3.4 Coefficients of equation 3.25

i	n_i^0		
1	0.102811e-1		
2	0.299621e-1		
3	0.156146e-1		
4	-0.422464e-2		
$\Lambda_1(\overline{\delta}) =$	$n_1 + n_2 \delta + n_3 exp[n]$	$_{4}(\delta + n_{5})^{2}]$	3.26

Table 3.5 Coefficients of equation 3.26

i	n _i	
1	0.39707	
2	0.400302	
3	-0.171587e4	
4	-0.239219e1	
$\Lambda_2(\delta,\theta)$	$=(n_1\theta^{-10}+n_2)\delta^{1}$	$^{.8}exp[n_2(1-\delta^{2.8})] +$
$n_4 A \delta^B$	$exp\left[\left(\frac{B}{1+B}\right)(1-\delta^1)\right]$	$^{+B})\Big]+n_5exp[n_6\theta^{1.5}+$
$n_7 \delta^{-5}$]	(3.27)	

$$A(\theta) = 2 + n_8 (\Delta \theta)^{-0.6}$$
 (3.27a)

$$B(\theta) = \begin{cases} (\Delta \theta)^{-1} \text{ for } \theta \ge 1\\ n_9(\Delta \theta)^{-0.6} \text{ for } \theta < 1 \end{cases} (3.27b) \text{ with } \Delta \theta = \\ |\theta - 1| + n_{10} \end{cases}$$

Table 3.6 Coefficients of equation 3.27

i	ni	i	ni
1	7.013090E-02	6	-4.117170E+00
2	1.185200E-02	7	-6.179370E+00
3	6.428570E-01	8	8.229940E-02
4	1.699370E-03	9	1.009320E+01
5	-1.020000E+00	10	3.089760E-03

For mixing of dry air and water Wilke equation[6] will be used. This equation has the following form:

$$\eta_{mix} = \frac{x_A \eta_A}{x_A + \eta_A \phi_{AV}} + \frac{(1 - x_A) \eta_V}{(1 - x_A) + \eta_V \phi_{VA}} (3.28) \text{ where}$$

$$\phi_{AV} = \frac{\left[1 + (\eta_A / \eta_V)^{1/2} (M_V / M_A)^{1/4}\right]}{\{8[1 + (M_A / M_V)]\}^{1/2}} (3.28a)$$

$$\phi_{VA} = \phi_{AV} \eta_V / \eta_A (M_A / M_V) (3.28b)$$

For thermal conductivity, similar equations will be used.

$$k_{mix} = \frac{x_A k_A}{x_A + k_A \phi_{AV}} + \frac{(1 - x_A) k_V}{(1 - x_A) + k_V \phi_{VA}} (3.29) \text{ where}$$

$$\phi_{AV} = \frac{[1 + (k_A/k_V)^{1/2} (M_V/M_A)^{1/4}]}{\{8[1 + (M_A/M_V)]\}^{1/2}} \quad (3.29a)$$

$$\phi_{AV} = \phi_{AV} k_V (k_V/M_V) \quad (3.29b)$$

$$\varphi_{VA} = \varphi_{AV} \kappa_V \kappa_A (m_A / m_V) \qquad (3.2)0$$

4. Computer development and error check

Several programs (classes) in java language to carry out this analysis. The list of program(class) names are given in Table 4.1

Table 4.1 Program lists

Class/interface name Source

Interface if_x	Base interface general definition
Interface if y	for function f(x)
Interface n_x	for function $f0(x0.x1.x2)$
	f1(x0,x1,x2,)
steam	Water-steam EOS Keenan,
	Keys,Hill, Moore 1969
steamIAPWS_IF97	Steam Tables Wolfgang Wagner
	Hans-Joachim Kretzschamar ISBN
	978-3-540-21419-9
steam_IAPWS95	The IAPWS Formulation 1995 for
	the Thermodynamic Properties of Ordinary Water Substance for
	General and Scientific Use W.
	Wagner and A. PruB J. Phys.
	Chem. Ref. Data, Vol. 31, No. 2, 2002
Gas SP	Scheireiber-Pitzer EoS Pure gases
Gmix_SP	Scheireiber-Pitzer EoS Gas
	mixtures
air_SP	Scheireiber-Pitzer EoS for air
numia_air_SP	Pitzer EoS for dry air
air_IAPWS	Dry air EOS. Guideline on an
	Equation of State for Humid Air in
	Contact with Seawater and Ice,
	Example to the Exampl
	Thermodynamic Properties of
	Seawater
air_PR	Dry air EOS. using Peng Robinson
	EOS for mixtures The properties of Gases & Liquids Pohert C. Paid at
	al., Janaf Tables (NIST data
	https://janaf.nist.gov/)
air-PR1	Dry air EOS. using Peng Robinson
	Properties are assumed for air. The
	properties of Gases & Liquids
	Robert C. Reid et al., Janaf Tables
Air DC	(NIST data <u>https://janaf.nist.gov/)</u>
All_FO	as a single gas.
humid_air_IAPWS	Humid air EOS, Guideline on an
	Equation of State for Humid Air in
	Consistent with the LAPWS
	Formulation 2008 for the
	Thermodynamic Properties of
humid i DD	Seawater
numid_air_PR	Humid air EOS using peng Rohinson EOS as mixtures fro dry
	air, The properties of Gases &
	Liquids Robert C. Reid et al., Janaf
	Tables (NIST data
	www.turhancoban.com
humid_air_PR1	Humid air EOS using peng
	Robinson EOS as a single gas for
	dry air, The properties of Gases &
	Tables (NIST data
	https://janaf.nist.gov/),
	www.turhancoban.com
humid_air_PG	Humid air EOS using Perfect gas
	Gases & Liquids Robert C. Reid et
	al., Janaf Tables (NIST data

	https://janaf.nist.gov/),						
	www.turhancoban.com						
Gas	Pure ideal gas EOS including air						
	and other gases						
	www.turhancoban.com SCO1.jar						
Plot	2D Plot program						
	www.turhancoban.com SCO1.jar						
GasTable	Graphic User Interface for class						
	Gas						
Wetair	Ideal Gas Humid air EOS utilises						
	Gas class and steam class						
psT	Graphic User Interface for class						
	wetair						
steamTable	Graphic User Interface for class						
	steam						
steamTableIF97	Graphic User Interface for class						
	steamIAPWS_IF97						
steamTableIAPWS95	Graphic User Interface for class						
	steam_IAPWS95						

In Table 4.2 different EOS results compared for 3 thermodynamic states. A Graphic user interface programs are also given for non-researchers to utilise these programs. For utilisation of researchers a small sample code is given to show calling of thermodynamic and thermophysical properties for a given state.

Table 4.2 Comparisons of 3 different EOS for water & Steam thermodynamic properties.

Class	Р	Т	v	h	u	S	х
steam	3.535 746	300	19.55 028	1331. 584	1262.	4.45599	0.5
steamIAPW S_IF97	3.536 589	300	19.54 153	1331. 234	1262. 124	4.45533	0.5
steam_IAPW S95	3.536 718	300	19.54 013	1331. 21	1262. 102	4.45524 4	0.5
steam	101.3 25	300	0.001 003	112.7 105	112.6 089	0.39324 5	-1.1E- 09
steamIAPW S_IF97	101.3 25	300	0.001 003	112.6 65	112.5 634	0.39309 7	-1
steam_IAPW S95	101.3 25	300	0.001 003	112.6 549	112.5 532	0.39306 2	-2
steam	101.3 25	400	1.801 666	2730. 178	2547. 624	7.49502 3	2.467 381
steamIAPW S_IF97	101.3 25	400	1.802 056	2730. 272	2547. 679	7.49607 8	2
steam_IAPW	101.3 25	400	1.801 984	2730. 301	2547. 715	7.49620	2

select	known property pair :	tx 💌		tx			
Temp	erature	26.85			dearee C		
Quality		a d		ka vonos/ka m			
Qualit	y	0.5			ky vapoliky in	IA.	
ref no	Proper	rty		٧	/alue	Uni	its
0	P, pressure		3.53658941301301		kPA		
1 T, temperature			300.0		deg K		
2	v, specific volume		19.54153091085491		m³/kg		
3 h, enthalpy 4 u, internal energy			1331.2339995598668		KJ/kg		
		1262.12362		282264708	KJ/kg		
5	s, entropy	4.455330143 0.5		13251472	KJ/kgK		
6	x, quality				kg vap/k	g mix	
7	Cp, specific heat at cons	stant pressure	3.047652881010811 2.7865537214788523 0.0018038799072103277		KJ/kgK		
8	Cv, specific heat at cons	tant volume			KJ/kgK		
9	α isobaric thermal expansion	nsion coefficient			1/K		
10	κ isothermal compressi	bility	0.14164	256	6627990343	1/Pa	
11	η Dynamic viscosity		4.31755	341	14548716E-4	Pa.s	
12	k Thermal conductivity		0.31437	659	230765896	W/mK	
13	σ Surface tension		0.07168	596	6252716256	N/m	
14	Prandtl number		4.18555	465	54928399		
15	ρ density		0.05117306338801332		5338801332	kg/m³	
16	speed of sound		965.436	734	13179528	m/s	

Figure 4.1 steam_IAPWS95 Graphic user interface

By using equations given above a class called air_IAPWS95 is developed. The result of this class is compared with Peng-Robinson EOS results as a mixing of the gases inside air and as a single gas with pseudocritical properties plus ideal gas equation of state. Results are given in table 4.3. It should be note that enthalpies of the perfect gas case (air_PG) is the same regardless of temperature.

Table 4.3 Air properties at different states for 5 dry air models

dry air model	P kPa	T deg. K	ro kg/m^3	h kJ/kg	s kJ/kgK
Schreiber Pitzer	100	300	0.86134 51	27.0202 14	0.09823 7
Lee-Kesler	100	300	0.86067 99	27.0329 45	0.09820 08
Peng-Robinson	100	300	0.86068 47	27.0331 3	0.09820 13
IAPWS	100	300	0.86088 18	27.0136 16	0.09810 9
Perfect_Gas	100	300	0.86114 74	27.0100 79	0.09809 83
Schreiber-Pitzer	100	350	1.00491 41	77.4087 58	0.25348 85
Lee-Kesler	100	350	1.00452 01	77.4446 38	0.25363 03
Peng-Robinson	100	350	1.00452 76	77.4450 73	0.25363 14
IAPWS	100	350	1.00468 44	77.3937 49	0.25342 6
Perfect Gas	100	350	1.00467 19	77.3902 07	0.25341 53
Schreiber _Pitzer	300	300	0.28710 75	26.5581 51	- 0.21831 59
Lee-Kesler	300	300	0.28658 71	26.9411	- 0.21746 14

Peng-Robinson	300	300	0.28659 06	26.9415 68	- 0.21745 98
IAPWS	300	300	0.28678 84	26.5614 85	- 0.21857 83
Perfect_	300	300	0.28704 91	27.0100 79	- 0.21725 74
Schreiber-Pitzer	300	350	0.33497 03	77.0761 11	- 0.06284 54
Lee-Kesler	300	350	0.33474 29	77.4155	- 0.06180 87
Peng-Robinson	300	350	0.33474 88	77.4167 09	- 0.06180 56
IAPWS	300	350	0.33490 71	77.0731 31	- 0.06285 4
Perfect Gas	300	350	0.33489 06	77.3902 07	- 0.06194 04
Schreiber-Pitzer	500	300	0.17226	26.0989 5	- 0.36610 31
Lee-Kesler	500	300	0.17177 3	26.8514 65	- 0.36439 29
Peng-Robinson	500	300	0.17177 63	26.8522 67	- 0.36438 97
IAPWS_EoS	500	300	0.17197 34	26.1111 96	- 0.36653 91
Perfect Gas	500	300	0.17222 95	27.0100 79	- 0.36388 94
Schreiber- Pitzer	500	350	0.20098 15	76.7456 02	- 0.21041 41
Lee-Kesler	500	350	0.20079 08	77.3880 08	- 0.20851 93
Peng- Robinson_EoS	500	350	0.20079 64	77.3900 24	- 0.20851 36
IAPWS_EoS	500	350	0.20095 47	76.7544	- 0.21040 72
Perfect_Gas_Eo S	500	350	0.20093 44	77.3902 07	- 0.20857 24
Schreiber_and_ Pitzer_Eos	1000	300	0.08612 44	24.9633 92	- 0.56791 22
Lee- Kesler_EoS	1000	300	0.08567 21	26.6370 46	- 0.56407 77
Peng- Robinson_EoS	1000	300	0.08567 55	26.6389 07	- 0.56406 92
IAPWS_EoS	1000	300	0.08587 03	24.9933 51	- 0.56881 53
Perfect_Gas_Eo S	1000	300	0.08611 47	27.0100 79	- 0.56285 67
Schreiber_and_ Pitzer_Eos	1000	350	0.10048 99	75.9286 6	- 0.41167 98
Lee- Kesler_EoS	1000	350	0.10033 38	77.3264 24	- 0.40766 28
Peng- Robinson_EoS	1000	350	0.10033 93	77.3306 13	- 0.40764 97
IAPWS_EoS	1000	350	0.10049 72	75.9656 6	- 0.41166 39

Perfect_0 S	Gas_Eo	1000	350	0.10046 72	77.3902 07	- 0.40753 97
----------------	--------	------	-----	---------------	---------------	--------------------

Properties of steam and dry air combined according to equations given above sections. The program is called humid_air_SP

Properties of	humid air Schreiber and Pitzer Eos based				-	
array no	property name	value humid air mass fr base	unit	value dry air mass fr		uni
0	P. pressure	100.0	kPA			
1	T, temperature	27.0	deg C			
2	v, specific volume	25.402241825970233	m3/kg humid air	25.656264244229	m3/k	(g dry :
3	h, enthalpy	804.4010246906976	KJ/kg	812.4450349376045	kJ/(k	g dry a
4	s, entropy	3.047651475134144	KJ/kgK	3.0781279898854	kJ/(k	g dry a
5	w, specific humidity, humidity ratio	0.010000000000000009	kg vap/kg dry air			
6	A, mass fraction of dry air	0.9900990099009901	kg dry air/kg humid air			
7	xA, mole fraction of dry air	0.9841800033703808	kmol drv air/kmol humid air			
8	relative humidity	0.44338249558375536				
9	Advabatic saturation temperature	26.32007690837736	degree C			
10	dew point temperature	13.836684767782572	degree C			
11	n Dynamic viscosity	4.481272455272595E-4	Pa.s			
12	k Thermal conductivity	0.027689959815567513	W/mK			
13	degree of saturation	0.4400349142502254				
14	Pa dry air partial pressure	98,41800033703808	kPA			
15	Pv water moisture partial pressure	1.5819996629619193	kPa			
16	o density	0.039366604209619016	kg humid air/m ³	0.0389768358511	kg di	rv air/n
17	Cp isochoric specific heat	28,85642998235202	kJ/(kg humid air K)	29.14499428217554	kJ/(k	g dry a
18	Cv isovolumetric specific heat	20,59679398613585	kJ/(kg humid air K)	20.80276192599721	kJ/(k	g dry a
19	ha enthalpy of dry air KJ/kg dry air	786.9345711437845	kJ/(kg humid air)	794,8039168552224	kJ/(k	g dry a
20	by enthalpy of yapor. K L/kg water	2551 046370382008	kI/(kg water)			

Figure 4.1 humid_air_SP Graphic output for P=100 kPa and T=300 K

🍰 P	Properties of humid air Schreiber and Pit	zer Eos based				-	×
arra	property name	value humid air mass fr base	unit	value dry air mass fr base		unit	
0	P, pressure	200.0	kPA				
1	T, temperature	27.0	deg C				
2	v, specific volume	12.696452324387684	m ² /kg humid air	12.823416847631561	m³/kg dry air		
3	h, enthalpy	797.8637409928307	KJ/kg	805.842378402759	kJ/(kg dry air)		
4	s, entropy	-2.680345271872491	KJ/kgK	-2.707148724591216	kJ/(kg dry air K)		
5	w, specific humidity, humidity ratio	0.010000000000000009	kg vap/kg dry air				
6	A, mass fraction of dry air	0.9900990099009901	kg dry air/kg humid air				
7	xA, mole fraction of dry air	0.9841800033703808	kmol dry air/kmol humid air				
8	relative humidity	0.8867649911675107					
9	Advabatic saturation temperature	26.928965465718306	degree C				
10	dew point temperature	24.969151193013317	degree C				
11	n Dynamic viscosity	4.4825575823839E-4	Pa.s				
12	k Thermal conductivity	0.02773050604039224	W/mK.				
13	degree of saturation	0.8860839787998422					
14	Pa dry air partial pressure	196.83600067407616	kPA				
15	Pv water moisture partial pressure	3.1639993259238386	kPa				
16	p density	0.0787621592591793	kg humid air/m3	0.07798233590017753	kg dry air/m3		
17	Cp isochoric specific heat	28.856427190029766	kJ/(kg humid air K)	29.144991461930065	kJ/(kg dry air K)		
18	Cv isovolumetric specific heat	20.596796526725186	kJ/(kg humid air K)	20.802764491992438	kJ/(kg dry air K)		
19	ha enthalpy of dry air KJ/kg dry air	780.3391265758206	kJ/(kg humid air)	788.1425178415789	kJ/(kg dry air K)		
20	hv enthalpy of vapor KJ/kg water	2550.3251826938385	kJ/(kg water)				

Figure 4.2 humid_air_SP Graphic output for Graphic output for P=200 kPa and T=300 K

Seperately classes humid_air_IAPWS, and humid_air_PG and humid_air_PR1 is developed. The details of this classes will not be given here, but the results will be given for the same state, to compare the results.

Properties of hum	id air IAPWS formulation	based			-		×
array no	property name	value humid air mas	unit	value dry air mass fr		unit	
0	P, pressure	100.0	kPA				
1	T, temperature	27.0	deg C				
2	v, specific volume	0.8664624868042093	m²/kg humid air	0.8751271116722514	m²/kg	dry air	
3	h, enthalpy	52.14470914801575	KJ/kg humid air	52.666156239495905	kJ/(kg	dry air)	
4	s, entropy	0.19018964662174	KJ/kg humid air K	0.1920915430879652	kJ/(kg	dry air K)	
5	w, specific humidit	0.01	kg vap/kg dry air				
6	A, mass fraction of	0.9900990099009901	kg dry air/kg humi				
7	xA, mole fraction o	0.984176136314283	kmol dry air/kmol				
8	relative humidity	0.4434908764528124					
9	Advabatic saturatio	18.566356243334894	degree C				
10	dew point temperat	13.84044390344826	degree C				
11	n Dynamic viscosity	4.47979692042079	Pa.s				
12	k Thermal conducti	0.02766863608203	W/mK				
13	degree of saturation	0.44014174713412					
14	Pa dry air partial pr	98.4176136314283	kPA				
15	Pv water moisture	1.5823863685716977	kPa				
16	p density	1.1541180549989183	kg humid air/m3	1.1426911435632854	kg dry	air/m³	
17	Cp isochoric specifi	1.0150685555201293	kJ/(kg humid air K)	1.0252192410753307	kJ/(kg	dry air K)	
18	Cv isovolumetric sp	0.7248923833253497	kJ/(kg humid air K)	0.7321413071586031	kJ/(kg	dry air K)	
19	ha enthalpy of dry a	27.168150462752937	kJ/(kg humid air)	27.439831967380467	kJ/(kg	dry air K)	
20	hv enthalpy of vapo	2551.046212195935	kJ/(kg water)				

Figure 4.5 humid_air_PG (Perfect Gas) Graphic output for P=100 kPa and T=300 K

Properties of humid a	ir IAPWS formulation based				-		Х
array no	property name	value humid air mass fr	unit	value dry air mass fr base		unit	
0	P, pressure	200.0	kPA				
1	T, temperature	26.85000000000023	deg C				
2	v, specific volume	0.43286549679599523	m3/kg humid air	0.43719415176439236	m3/kg dry	air	
3	h, enthalpy	51.75229077659324	KJ/kg	52.269813684411446	kJ/(kg dry	air)	
4	s, entropy	-0.011182786684057885	KJ/kgK	-0.011294614550909758	kJ/(kg dry	air K)	
5	w, specific humidity, h	0.010000000001010007	kg vap/kg dry air				
6	A, mass fraction of dr	0.9900990099	kg dry air/kg humid air				
7	xA, mole fraction of dr	0.9841761363127101	kmol dry air/kmol hu				
8	relative humidity	0.8948333193280208					
9	Adyabatic saturation te	25.743134749487012	degree C				
10	dew point temperature	24.973247708116673	degree C				
11	n Dynamic viscosity	4.480802598149723E-4	Pa.s				
12	k Thermal conductivity	0.02769973078997641	W/mK				
13	degree of saturation	0.8942004153895697					
14	Pa dry air partial press	196.83522726254202	kPA				
15	Pv water moisture part	3.164772737457988	kPa				
16	p density	2.310186437592851	kg humid air/m2	2.28731330454509	kg dry air/	m²	
17	Cp isochoric specific h	1.0169360736338184	kJ/(kg humid air K)	1.0271054343711838	kJ/(kg dry	air K)	
18	Cv isovolumetric speci	0.7253418356987908	kJ/(kg humid air K)	0.7325952540565114	kJ/(kg dry	air K)	
19	ha enthalpy of dry air	26.794473254711864	kJ/(kg humid air)	27.062417987286047	kJ/(kg dry	air K)	
20	hv enthalpy of vapor	2550.0389795436004	kJ/(kg water)				

Figure 4.3 humid_air_IAPWS Graphic output for P=100 kPa and T=300 K

array no	property name	value humid air mass fr ba	unit	value dry air mass fr base	unit
)	P, pressure	100.0	kPA		-
	T, temperature	26.85000000000023	deg C		
	v, specific volume	0.8779341043871022	m ² /kg humid air	0.8867134454309733	m3/kg dry air
	h, enthalpy	52.02002462463205	KJ/kg	52.540224870878376	kJ/(kg dry air)
	s, entropy	0.1852597688313493	KJ/kgK	0.18711236651966281	kJ/(kg dry ar K)
5	w, specific humidity, hu	0.010000000000000122	kg vap/kg dry air		
5	A, mass fraction of dry air	0.99009900990099	kg dry air/kg humid air		
1	xA, mole fraction of dry air	0.984176179326808	kmol dry air/kmol humi.		
3	relative humidity	0.4474154434487798			
2	Advabatic saturation tem	18.519809229567613	degree C		
10	dew point temperature	13.840403083643821	degree C		
11	η Dynamic viscosity	4.481108595837139E-4	Pa.s		
12	k Thermal conductivity	0.027679038306385732	W/mK		
13	degree of saturation	0.44408995687375685			
14	Pa dry air partial pressure	98.4176179326808	kPA		
15	Pv water moisture partial	1.582382067319199	kPa		and the second sec
16	p density	1.1390376510069782	kg humid air/m ^a	1.1277600505019585	kg dry air/m8
7	Cp isochoric specific heat	1.0377745914519034	kJ/(kg humid air K)	1.0481523373664225	kJ/(kg dry air K)
18	Cv isovolumetric specific	0.7261476481858238	kJ/(kg humid air K)	0.7334091246676822	kJ/(kg dry air K)
19	ha enthalpy of dry air KJ/	27.032583435393093	kJ/(kg humid air)	27.302909269747026	kJ/(kg dry air K)
10	hy enthalpy of vapor KJ/	2550.7641435484975	kJ/(kg water)		1

Figure 4.5 humid_air_PR1 Graphic output for P=100 kPa and T=300 K

array no	property name	value humid air mass fr base	unit	value dry air mass fr base	u	init	
)	P, pressure	100.0	kPA				
	T, temperature	26.8500000000023	deg C				
	v, specific volume	0.8784017828286436	m3/kg humid air	0.8871858006569301	m3/kg dry	air	
	h, enthalpy	51.99774272512549	KJ/kg	52.517720152376754	kJ/(kg dry	air)	
	s, entropy	0.1851599720076865	KJ/kgK	0.1870115717277634	kJ/(kg dry	air K	, T
	w, specific humidity, humidity ratio	0.01000000000000122	kg vap/kg dry air				
	A, mass fraction of dry air	0.99009900990099	kg dry air/kg humid air				
	xA, mole fraction of dry air	0.9841761363142828	kmol dry air/kmol humid air				
	relative humidity	0.4474166596195414					
)	Adyabatic saturation temperature	18.517703764710518	degree C				
0	dew point temperature	13.840444902461059	degree C				
1	n Dynamic viscosity	4.4811104903645E-4	Pas				
2	k Thermal conductivity	0.02767903995508192	W/mK				
3	degree of saturation	0.44409115606801813					
4	Pa dry air partial pressure	98.41761363142828	kPA				
5	Pv water moisture partial pressure	1.5823863685717199	kPa				
6	p density	1.138431204886429	kg humid air/m3	1.1271596087984443	kg dry air/	m³	
1	Cp isochoric specific heat	1.0377745914519034	kJ/(kg humid air K)	1.0481523373664225	kJ/(kg dry	air K	
8	Cv isovolumetric specific heat	0.7261483854545466	kJ/(kg humid air K)	0.7334098693090921	kJ/(kg dry	air K	1
9	ha enthalpy of dry air KJ/kg dry air	27.01007873556395	kJ/(kg humid air)	27.280179522919592	kJ/(kg dry	air K	
0	hv enthalpy of vapor KJ/kg water	2550.7641416812485	kJ/(kg water)				

Figure 4.6 humid_air_PG Graphic output for P=100 kPa and T=300 K

5. Conclusions

In air conditioning processes in order to predict thermodynamic and thermopysical properties of humid air (a mixture of dry air and water vapor) usually perfect gas equation of state is utilised, But some processes such as drying of humid air in a compressed air tank, adding water to the compressor of gas turbine power plant to improve overall efficiency will require better approaches. In thermophysical property predictions, most used approach is to assume such properties as only function of temperature. In reality properties such as viscosity and thermal conductivity heavily depends on pressure as well as temperature. Furthermore such properties are quite a nonlinear function of pressure so that a linear interpolation type of correction of properties will not be correct. In this study, a computer model of thermodynamic and thermopysical properties of humid by using Schreiber and Pitzer_equation of states used. For dry air viscosity and thermal conductivities equations based on experimental studies by Kadoya et al[1] and Lemmon et al[2] is used. Water viscositiy equations are taken from IAPWS Industrial Formulation 1997[4] and then these data combined by using Wilke equation[6]. Computer models for different set of real gas equation of State by IAPWS EOS, Peng-Robinson EoS and perfect gas formulations are also derived and results are compared. All computer codes developed in java programming language and program codes are given as free acess to researchers at internet adress www.turhancoban.com. All equations for property of water-steam, dry air and humid air is given with details and coefficients for the researchers wish to develop their own version of computer codes in their desired programming language.

6. References:

- K. Kadoya, N. Matsunaga, and A. Nagashima, Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase, Journal of Physical and Chemical Reference Data 14, 947 (1985)
- E. W. Lemmon & R. T. Javobsen, Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air, International Journal of Thermophysics, Vol. 25, No. 1, January 2004
- The International Association for the Properties of Water and Steam, Revised Relase on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, Prague, Check Republic 2018, IAPWS R6-95(2018)
- The International Association for the Properties of Water and Steam, Revised Relase on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, Lucerne, Switzerland, August 2007, IAPWS R7(2012)
- J.R. Cooper, R. B. Dooley, The International Association for the Properties of Water and Steam, Guideline on an Equation of State for Humid Air in Contact with SeaWater and Ice, Consistent with the

IAPWS Formulation 2008 for the Thermodynamic Properties of SeaWater

- Robert C. Reid, John M. Prausnitz, Bruce E. Poling, The Properties of Gases & Liquids, Fourth Edition, McGraw-Hill ISBN 0-07-051799-1
- Bruce E. Poling, John M Prausnitz, John P. O'connel, The Properties of Gases & Liquids, 5th edition, 2004, McGraw-Hill ISBN 0-07-051799-1, ISBN-10: 0070116822
- 8. Numerical Thermodynamics, M. Turhan Coban, www.turhancoban.com
- Ian H. Bell, Jorrit Wronski, Sylvain Quailin, and Vincent Lemort, Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp, Ind Eng Chem Res 2014 Feb 12;53(6) 2498-2508 DOI 10.1021/ie4033999
- S. G. S. Beirao, A.P.C. Ribeiro, M.J.V. Lourenço, F.J.V. Santos, C.A. Nieto de Castro, Thermal Conductivity of Humid Air, Int J Thermopys (2012) 33:1686-1703, DOI 10.1007/s10765-012-1245-5
- Xiaoyan Ji, Thermodynamic properties of Humid air and their application in advanced power generation cycles, Doctaral Thesis in Chemical Engineering, KTH Royal Institute of Technology, Energy Processes, SE-100 44 Stockholm, Sweeden, ISBN 91-7178-437-3
- R. Feistel, D.G. Wright, D.R. Jackett, K.Miyagawa, J.H. Reissmann, W. Wagner, U. Overhoff, C. Guder, A. Feistal, G.M. Marion, Numerical implementation and ocenographic application oft he thermodynamic potentials of liquid water, water vapor, ice, sewater and humid air- Part 1: Background and equations, Ocean Sci., 6, 663-677,2010 DOI 10.5194/os-6-633-2010
- R. Feistel, D.G. Wright, D.R. Jackett, K.Miyagawa, J.H. Reissmann, W. Wagner, U. Overhoff, C. Guder, A. Feistal, G.M. Marion, Numerical implementation and ocenographic application oft he thermodynamic potentials of liquid water, water vapor, ice, sewater

and humid air- Part 2: The library routines, Ocean Sci., 6, 695-718,2010 DOI 10.5194/os-6-695-2010

- Simeen Sattar, Thermodynamics of Mixing Real Gases, Jornal of Chemical Education Vol. 77 No 10 October 2000
- Wolgang Wagner, Hans-Joachim Kretzschmar, International Steam Tables, Properties of water and steam based on industrial formulation IAPWS-IF97, Springer, ISBN 978-3-540-21419-9, DOI 10.1007/978-3-540-74234-0
- Joseph H. Keenan, Frederick G. Keyes, Philip G. Hill, Joan G. Moore, Steam Tables Thermodynamic

properties of Water incuding vapor, liquid and solid phases, Wiley-Interscience, ISBN 0-471-04210-2

- E. W. Lemmon1, and R. T Jacobsen, "Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air", International Journal of Thermophysics, Vol. 25, No. 1, January 2004 (© 2004)
- Pitzer, Kenneth S., J. J. Am. Chem. Soc., 77:3427 (1955)
- Schreiber, Donald R. and Pitzer, Kenneth S., Selected equation of State in the Acentric Factor System, International Journal of Thermodynamics, Vol 9, No. 6, 1988