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Abstract In stoichiometric (based on K equilibrium constants) thermodynamic property algorithms, it is usually
ideal gas EOS is used. The basic reason for this is simplicity of using ideal gas EOS. Real gas equation of states
involves complicated mathematical procedures such as root finding processes, which is time consuming as well as
requires long algorithms. Ideal gas based equilibrium calculations are usually satisfies requirements for chemical
reactions at athmospheric pressure zone. An equation of state with better accuracy of thermodynamic properties
will be required for extreme cases, such as gas turbine combustion chamber. In this study Scheireber-Pitzer real
gas equation of state will be used to predict thermodynamic properties of gases. This is a generalised EoS for gases
based on Pitzer’s acentric factor. Stoichiometric formulations requires equlibrium formulations. Atomic balances
gives equalibrium chemical moles as much as number of available atoms, for each additional chemical an
additional equiibrium formulations is needed. When equations came together, they created quite a nonlinear
system of equation. These set of equation can be solved by linearisation methods. In this study, it is prefer to solve
directly in non-linear form by using homotophy(continuation) method. Continuation method is relatively less
dependent to initial conditions. It is based on solution of a differential equation system by using a numerical soltion
method. 6th degree Runge-Kutta method is used to solve differential equation to obtain non-linear equation
solution by continuation method. All the codes are developed in java programming language. The program code
are given to interested researchers as free access in www.turhancoban.com adress.

Keywords: Thermodynamic properties of gases, Schereiber-Pitzer EoS, chemical equilibrium, Stochiometric
algorithm for chemical equilibrium

1. Formulation of Equation of State

In this paper, We will consider Scheiber-Pitzer
equation of states for pure gases. Details of the
Scheiber-PitzerEoS is given below.
Z=—=1+B(T.p)pr + C(T,, p)pf + D(T;, pr)pi +

»
PRT
E(T,, p)pR + F(T, p)pl + G(Ty, pr)pf + H(T,, pr)pi° +
(T, ppr? (L.1)
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Where win Scheiber-Pitzer equation of states
coefficient is called Pitzer’s accentric factor. This
factor is calculated as
= —logioPsaturatedvapor(at T, = 0.7) =1 (1.2)

Table 1.1 C[i][j] Coefficients of Scheiber-Pitzer

EoS
j=1 j=2 j=3
Cl,j 0.4422590000 0.7256500000 0.0000000000
C2,j -0.9809700000 0.2187140000 0.0000000000
C3,j -0.6111420000 -1.2497600000 0.0000000000
C4,j -0.0051562400 -0.1891870000 0.0000000000
C5,j 0.1513654000 2.3067060000 10.4117400000
C6,j -0.0438262500 4.6960680000 15.1414600000
C7, 1.1026990000 3.1293840000 -9.5214090000
C8,j -0.6361056000 0.3266766000 2.9046220000
C9,j 0.0087596260 -3.2040990000 8.0023380000
C10,j | 0.3412103000 8.8721690000 14.4038600000
Cll,j -0.8842722000 -6.6874710000 11.7685400000
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C12,j | 0.1375109000 0.2432806000 -0.5515101000
C13,j | -0.1443457000 1.2869320000 -2.1809880000
C14,j | -0.0059695540 0.0454196100 0.0000000000
C15,j | 0.0245053700 -0.4158241000 0.7914067000
C16,j | -0.0041995900 0.0910596000 -0.1786378000
C17,j | 0.0004665477 -1.2620280000 -2.8267720000
C18,j | -0.0194510100 0.7812220000 4.1900460000
C19,j | 0.0408364300 1.3988440000 0.0000000000
C20,j | -0.0354691700 -1.4560410000 0.0000000000
C21,j | -0.0028779550 0.2104505000 0.0000000000
C22 0.0058962650 0.2191255000 0.0000000000

Derivatives of the equations:
0B(T.p) 1 _6_2_26_3_66_4]
aT Tl 12 T3 "1
ac(T,, 1
(—’pr) S 3C_7_ 4%exp(—p5)]
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Helmholtz energy equation will be used to predict

other thermodynamic properties
dA = —SdT — Pdv (1.4)
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p ORT
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The second term (limits between low density
po and density 0) can be defined as an ideal state
case where P = pRT. Now we can add and substract
ideal gas den5|ty term of the equatlon

PRT PRT
A—AOZIdeZIde+fp—d +f—dp
0

Po 0 Po

PRT
—fp—zdp (1.5)
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Considering for real EoS P = ZpRT equation
becomes

p
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Some of the terms in this integration includes terms
of exponential and power multiplications. This
integrations are carried out as follows:

Pr Pr « p2n+m
K(m.p) = [ presp(-pt)dp, = f Z( e ap,
0
p72_n+m+1
nHn 1.
Z( )(2n+m+1)n' a8

Handling these terms such as above Taylor series are
much easier than taken numerical integration, then
Helmholtz departure function becomes:

2
A=Ay = RT(Bpr +clp +C,K(1,p,) +D‘;r +Ep5T +Fpl
p;

+ Gy g+ G2, K(8,p,) + HoK(10,p,)

+ 121<(12,pr)> + RTin (p ) (1.9)
Entropy departure function:
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P
2

S—5, = R<Bpr+C1p2 + CK(1,p,) +D'%T+Ep5r +F%’

9
+ Gl%r + G, K(8,p,) + HyK(10,p,)

+ IZK(lzrpr)>

dB  dC,p? dC,
+RT(dTp ar 2 Tar Ke)
dDp? dEp? dFp! dGp]
E?Jrﬁ?JrE?erT?
G, dH,
K(8pr)+ K(10pr)

K(12 p,)> +Rin (pm)

Enthalpy departure functlon:



H—-—Hy=(A—-A4)+T(S—-S,)+RT(Z—-1) (1.11)

Table 1.2  Cp (kJ/kmol K) partial continious curve
fitting equations for N2 Nitrogen

Internal energy departure function:

i A B C Di Ti K | ThiK

U-Uy=(A—-A)+T(E-S,) (1.12) ' ' ' : :
Gibbs energy departure function: 0 29.408631 -2.251447 -0.012473 4.520889 100 350
G-Gy=(A—-4)+RT(Z-1) (113) 1 27.646169 0.882356 0.770074 4.764423 350 700

i A B: Ci Di T K Thi K 2 21.601706 14.878414 3.812808 -4.165467 700 1200
o | 294086307829 | -2.2514470827 | -0.0124732186 | 4.5208886188 100 350

3 29.830766 5.421561 -15.043096 -1.089614 1200 1700
1 | 27.6461690069 | 0.8823555268 | 07700742081 | 4.7644228675 350 700
o | 216017064500 | 14.8784143146 | 3.8128084889 -4.1654669506 700 1200 4 35.476742 0.973583 -42.547627 -0.097466 1700 2200
3 | 298307650455 | 5.4215607907 | -15.0430060215 | -1.0896138268 | 1200 1700 5 34.928203 1319404 .38.184192 -0.159911 2200 2700
4 | 354767415122 | 0.9735825046 | -42.5476274875 | -0.0074664401 | 1700 2200

6 36.262526 0.581500 -50.898362 -0.045731 2700 3200
5 | 34.9282028043 | 13194039653 | -38.1841919451 | -0.1599114820 | 2200 2700
¢ | 36.2625256395 | 05815001033 | -50.8983620805 | -0.0457311313 | 2700 3200 7 35.657341 0.766169 -34.665936 -0.059817 3200 3700
;| 956573400828 | 0.7661686027 | -34.6659363416 | -0.0598170521 | 3200 3700 8 36.418045 0.432596 44184706 .0.020152 3700 4200
g | 364180454205 | 04325957723 | -44.1847062013 | -0.0201521727 | 3700 4200

9 38.077688 -0.152960 -80.311808 0.036794 4200 4700
o | 380776880528 | -0.1529603974 | -80.3118075101 | 0.0367938172 4200 4700
10 | 37.7602843801 | -0.0499492999 | -73.1011550910 | 00277685442 | 4700 5200 10 37.760284 -0.049949 -73.101156 0.027769 4700 5200
1 39.9738552178 | -0.8545553355 | -77.5759376892 0.1012534665 5200 6000 11 39.973855 -0.854555 -77.575938 0.101253 5200 6000

The fugacity-pressure ratio:
lnz — (A - Ao)
P RT
Data is also needed to solve C,(T) value. In order to
establish that, NIST tables given at the address
https://janaf.nist.gov/ is used. The following partial
continuous formulation is taken. the following

partial difference curve fitting formula is used
5
Cpi(T)

+ znv1 +(Z-1-I@) (114

s, Gi10 -
=A; + B;1073T + + D;107°T?T,; < T
< Ty; (1.15)
As an example case of Partial continuous curve
fitting of Cp values Data for Nitrogen is given below.
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Figure 1.1 Cp of Nitrogen kJ/(kmolK)
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Figure 1.2 Error of Cp in Nitrogen kJ/(kmolK)
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For some gases only data is available is in
polynomial curve fitting format, for this cases
polynomial form is assumed.

2. Stoichiometric chemical
formulations

equilibrium

Actual products formed in a reaction is not a clear
cut concept. The actual products formed in a
chemical reactions can only be determined
experimentally and as a function of the
environmental values such as temperature, pressure
and time. When these parameters changed actual
products can change as well. One way of estimating
what products will be formed is to use equilibrium
concept. All physical systems are tend to minimize
their energy levels when there are no any external
force or energy to the system. For example a bubble
takes spherical shape under the influence of surface
tension which has the minimal area for the given
volume. Chemical reactions when temperature and
pressure is constant and long enough time is given,
tends to minimize it energy level, specifically gibbs
free energy level (or maximize its entropy level).
This state is called chemical equilibrium. For
example consider a closed system consisting initially
of a gaseous mixture of carbondioxide , oxygen and
carbonic acid. A reaction might take place is

€O, + H,0 2 H,CO5

At equilibrium the system will consist basically of
three components, CO,, H,COj3 and H,0, for not all
the components gases. This is what is called soda
reaction. When soda bottle opened equailibrium
condition (pressured in the system) is changed and
rection slides to a new equilibrium states, so that
some omount of COz and HO is formed and amount
of carbonic acid is reduced . Changes in the amounts



https://janaf.nist.gov/

of these components during the opening of soda
bottle:

dncoz = _dnH2C03

dny,o = —dny,co, (2.1)
where dn denotes the differential change in the
representative component.

_ dnco2 —_ dnH20 _ dnH2C03 22)

g - 1 - 1 -y 1
Equilibrium is a condition of balance. When

equilibrium is established amount of CO, and H,0
and H,COs tends to be balanced with each other. But
when equilibrium is broken and a new conditions
arise, like opening of a soda bottle, a new
equilibrium will be established. And during these
process total gibbs free energy of the system will be
minimised.

dG(T,P) =0 (2.3)
This amount can be determined from chemical
potential changes (see the first chapter for details)

_3G(T,Pn) _
Heo, = _0nco_2 0G(T,P,n) = #cozanco2
__9G(T,Pn) _
Hnyocos = —0nyzco3 dG(T,P,n) = HHzco3anHzco3
__3G(T,Pn) _
U0 = Tonmo 0G(T,P,n) = ty,o0ny,o

dG(T,P) = =1 % pco,dnco, — 1 * tiy,0dny,o + 1
* fyyco,dMpyyco, =0 (2.4)
dG(T,P) = (=1 % pigo, = 1 * o + 1 * iy, c0, ) dNpy0
=0 (25)
This is called the equilibrium reaction.For a more
general equilibrium equation such as:
v A+vgB 2v.C+v,D (2.6)
where v ‘s are stoichiometric coefficients. The
following equilibrium case is existed:
dny _ dng _ % _ dnp _de 27)
Uy Up Uc Up
where de is the proportionality factor. From which
the following expressions are obtained.
dny = —v, de
dng = —v; de
dne = v, de
dnp = v, de

(2.8)
For this case the Gibbs free energy equation takes
form:

dG(T,P) = —v, * uy —vp * ug + vc * pe +vp

*pup =0 (2.9)

For ideal gas mixtures chemical potential can be
expressed as specific gibbs free energy as

hri(T) = hy(T) — h(298.15) + Ahs(298.15)

9°(T) = hyy(T) = Ts°(T)

0 P
u; = g;(T) —RTIln (2.10)
Pref
where P; is the partial pressure of the gas. For and
ideal gas, partial pressure can be expressed as a
function of components in the total components

yi=—— P=yP P,=——P (211)
Substituting these into the equation gives:

Ntotal Ntotal

4y = g?(T)—RTln< mo L ) (2.12)

Ntotal ref
For a real gas mixtures chemical potential can be
expressed as specific gibbs free energy as
hyi(T,P) = hy(T,P) — h(298.15, P)
+ Ahr(298.15) (2.13)

s(T,P) = s%(T) — Rln( Ji ) (2.14)
Pref
g(T,P) = g°(T,P) — RTIn (Pfi ) (2.15)
ref

g°(T,P) = hyy(T,P) — Ts°(T) (2.16)

uizg?(T)—RTln< L) (2.17)
Pref

A —
Note that }Jl_l}‘ép—i =1 (2.18) therefore Py = fref

where f; is the partial fugacity of the gas. For a real
gas, partial pressure can be expressed as a function
of components in the total components

Vi=—— fi=yf* fi=——f" (2.19)

Ntotal Ntotal
Where f* fugacity that component i would have if

the entire gas had that composition at the same
temperature and pressure. f* = f(T,P) (2.20)

Substituting these into the equation gives:

0 n; [
u; =g;(T,P) —RTIn (2.21)
Ntotal ref

Then the basic Gibbs free energy equation becomes
dG(T,P) = —v, [gg(r) - RTln< " f_>]

Ntotal Pref

Np f*
—vy O(T)—RTIn( )]
! [gB Ntotal Pref
¢ fr
+ v, O(T)—RTIn( )]
¢ [gc Ntotal Pref
np fr
+v O(T)—RTIn( )]
i [gD Ntotal Pref

=0 (222)
Arranging equation:
dG°(T,P) = —v,g3(T,P) — vy g§(T, P) + v gé(T, P)
+v,95(T,P)
dG(T,P) = dG°(T, P)

n .
+ RT [UA ln( 4 f >
Notat  Pref

n *
+v,fln< 5 f >
Ntotal Pref
—vln( e I >
¢ Ntotal Pref
n *
—v,,ln( LI ]=0(223)

This equation can be written as:

dG°(T, P) [ . ( n, fr >+ ;
— 0 = |Uyln Upln
RT ' Ntotal Pref ?

e fT

Ntotal Pref)

np fr >
N¢otal Pref




~ | O

o2 ) s )]
exp <_ dGO(T'P)>=| Ntotal Pref Ntotal ef |
RT ne f* Ve np * \UD
[(ntotal Pref) (ntotal Pref) J
(nA)""(ng)””K f )"‘”U“_”"'_”“
= 2.25
(nc)vc (nD)UD ntotalpref ( )
The left hand side of the equation is called
equilibrium constant, which is only function of
temperature
dG°(T,P)

K(T) = exp (— RT ) (2.26)

As an example let us evaluate equilibrium constant
of the equilibrium reaction

1

i |2 Equilibrium Chemical Reaction - O ®

Equilibrium Reaction name : CO+¥02= CO2 at T=3000.0 K

Equilibrium formula :CO+0502 = C02
¥reactant = 3000.0 degree K

Tproduct = 30000 degree K

Equilibrium constant K= 3.054925273465452
Equilibrium constant InK = 1.1167551319203006
:Equilibrium constant log10K = 0 4850005914301246
Reaction composition : C 02

Atom balance check :true

Atomic balance:

cO 02 co2 bO(reactants) b1(products)|

1.0 0.0 1.0 1.0 1.0

C
1o 1.0 2.0 2.0 20 2.0

Equilibrium condition can be solved by solving
chemical balance equations together with the
equilibrium gibbs free energy minimisation
equations. So mass balance is an important part of
total set of equations to solve. Mass balance
establishes as follows:

NS
ZA””J' —b2=0 (i=1.na) (227)
j=1

NS
b = Z Ay (228)
=

bi—=b?=0 (i=1.na) (2.29)
where na is the number of chemical elements. Aj; is
number of kilogram atoms per kmole of species j.

And bi0 is the assigned number of kilogram atoms

element i per kmol of total reactants.

In order to explain this equation let us look at an
example. If chemicals in the reaction and input
moles re given as:

CH,4 1 kmol

H,0 10 kmol

H> 0 kmol

CO, 0 kmol

CO 0 kmol

0, 0 kmol

Ajj matrix will be

atom | CHs | HO | H, | CO, | CO | Oy
H 4 2 2 0 0 0
C 1 0 0 1 1 0
0 0 1 0 2 1 2

b? vector is the multiplication of number of atoms
with inlet mole numbers of the molecule
b3=1*4+10*2+0*2+0*0+0*0+0*0=24
b2=1*1+10*0+0*0+0*1+0*1+0*0=1
b3=0*1+10*1+0*0+0*2+0*1+0*2=10

In this case initial matrix will be in the form of:

(nCH4]
n
120 24

4220 0 0]fq,,
10011071(:02:1 (2.30)
0102 10 :

Neo 10

ng,
As it is seen from the example mass balance are
given us 3 equations, but total number of
equations(moles) are 6, remaining equations will be
gibbs equations as described above. All togetger
they construct a system of non-linear equations to
solve. The results will be equilibrium balance.

In order to solve system of equations continuity
method(it is also called homotophy method) is
used.

This method is relatively less dependent to initial
estimation of the system of equation solution,
therefore a good selection for solving the system of
non-linear equation. The method details is as
follows:When a problem of system of nonlinear
equations of the form F(x)=0 desired to be solved,
assume that solution set to be found is x*. Consider
a parametric function G(A,x) in the form of
G(A,X) = AF(X) + (1-M)[ F(x) - F(x(0)) ] (2.31)
Where A=0 coresponds to initial guess of the
solution , x(0) ,and where A=1 value corresponds
the actual solution set x(1)= x*

It is desired to be found G(A,x) = 0 therefore for
A=0 equation becomes

G(\,x) =G(0,x) = F(x) - F(x(0)) and for A=1
(2.32)

0=G(1,x) = F(x) (2.33)

Therefore at x(1)=x* solution set will be obtained.
If a function G(A,X) satisfies the above equation
can be found, it will also find us the solution.
Function G is called a homotopy between the
function G(0,x) and G(1,x)=F(x). In order to find
such a function, it is assumed to have a function
G(2,x)=0 is existed and partial derivative of this
function with respect to A and x will also be zero

0

_ 06X aGéi’ X) X (1) (2.34)

oA

if x’() is isolated form this equation, it becomes:

‘(1) = _{ae(z, X(A)} {66(1, x(ﬂ))}(. )
oX oA
(2.35)

If G(A,X) = AF(X) + (1-M)[ F(x) - F(x(0)) ] equation
is substituted into the differential equation




[of (x(A))  of,(x() o, (x(A)) | solution with a relatively rough estimate with
ox x o homotophy following with a Newton-Raphson type
1 2 3 - . . ..
8G(A, X(A) ~ afz(X(ﬂ.)) 6f2(X(l)) sz(X(ﬂ.)) B of . met_hod, which is quite efficient when the
= =J(x(1) estimation approaches the correct roots.
Ox X, 0oX, OXq
of,(x(4 of,(x(4 of,(x(1
3;)(( ) 3;)(( ) 3;)(( ) 3. Computer code development
L ! 2 s In order to calculate termodynamic properties of
(2.36) _ _ gases Schereiber and Pitzer real gas EoS is
Forms a Jacobian matrix. and developed (Gas_SP.java). This equation of state has
0G(A,x(1) a subclass to calculate specific heat values as
{T =F(x(0)) (237) curvefitting values (Gas_Data.java). Equilibrium
) ) ) coefficients are calculated from
Differential equation becomes ChemicalRaction_SP class. System of equations are
. dx(A) 1 set together in if_equilibrium_SP class. Continuatio
X(4)= i = _[J (X(ﬂ))] F(x(0)) 0 <A <1method to solve non-linear system of equation is
given in class iterative_continuity. And finally
(2;38) . . . . equilibrium codes are solve in equilibrium_SP class.
Itis possible to solve such a differential equation by In addition to this set an ideal gas equivalent is also
using initial value problem approaches, solution at prepared for comparison purposes. List of classes
x(1) WI|| be given us the _rc_)ots of the system of_ and their utilisation areas are given as a table below:
equation. Solutions of initial value problems will be
given latter chapters in details, but A sixth order Program Utilisation
Runge-Kutta differential equation solution will be Atom Calculation atomic balances,
defined here to solve our homotopy problem. If atomic properties
H Gas_Data Gas data for approximately
equation 600 gases
dx(4 : .
( ) _f (/1, X(Z)) (2.39)is given the 6th Gas_SP Et(:)gerelber and Pitzer real gas
d . . Gas_PG Perfect Gas EoS
order Runge-Kutta method to numerically solve this ChemicalReaction_SP | Chemical reaction calculater
differential equation is defined as: __ for Gas SP
Vie1 = Vi + (1/90)*( 7ky + 32ks +12k4+32ks+7ks)h If_equilibrium_SP E(f:;’t‘iesn”f‘;':'ggseag;yﬁem of
ki=f(xi,yi) Equilibrium_SP Stoichiometric  Equilibrium
ko=f(x;+0.25h , y;i+0.25k1h) calculator for Gas_SP
ks=f(xi+0.25h , yi+0.125k:h+0.125k;h) ChemicalReaction_PG | Chemical reaction calculater
for Gas_PG
=f(x;+0.5h , yi— 0.5koh+k3h) —— —— -
Ka If_equilibrium_PG Defines non-linear system of
ks=f(xi+0.75h , yi + (3/16)kih+(9/16)ksh) equation for Gas_PG
ke=f(xi+h , yi- (3/7)kih+(2/7)k2h+(12/7)ksh - Equilibrium_PG Stoichiometric  Equilibrium
calculator for Gas_SP
(12/7)kan+(8/7)ksh) - (2.40) Iterative_continuity Continuation(homotophy)
method for non-linear system
This equation can be given as Buthcher tableu as: of eqns.
0 0 0 0 0 0 Sample solutions:
1/4| 1/4 0 0 0 0 One kmol of CO an d one kmol of O; established an
1/4] 1/8 1/8 0 0 0 eq_w_llbrlum at 3900 K. The equilibrium reaction for
/ this is as follows:
214 1/4 -1/4 1 0 0 1
3/16 0 0 9/16 0 The reaction will be
1\-3/7 2/7 12/7 -12/7 8/7 CO + 0, » nyCO +n,0, + n,CO,
1/90 7/90 32/90 12/90 7/90 Find the equilibrium composition. System pressure

is P=101.325 bar. (Pref=101.325 bar)

. (241) . ] import java.util.*;
In these equations h is finite difference step size. import java.awt.*;
Solution starts by using the initial value A=0 , x0(0) import java.applet. Applet;

. . . . import java.awt.event.*;
and adds h into 2 in each iteration step. The code import javax.swing.*:
given here uses 6th degree Runge-Kutta method to public class equilibrium_SP
solve homotopy(Continuation problem). It should {public double N[
be note that Homotophy method is less dependent to public String s[]; _

s .. public double result[][];
initial value compare to methods such as Newton- public double P;
Raphson therefore one possibility is to approach public chemicalReaction SP r[J;




public if_equilibrium_SP fe;
public equilibrium_SP(String si[],double Ni[][][],double Pi)
{ N=Ni;

S=si;

P=Pi;

int n=N.length;

r=new chemicalReaction_SP[n];

for(int i=0;i<n;i++)

{r[i]=new chemicalReaction_SP("reaction:"+i,s,N[i]);}

}

public  double[][] calculate(double  Tproduct,double
Treactant,double P,double nO[],double high[])

{fe=new if_equilibrium_SP(n0,s,r, Treactant, Tproduct,P);

int n_egn=n0.length;

double low[]=new double[n_eqn];

int n_iteration=10;

iterative_continuity itc=new
iterative_continuity(n_iteration,low,high);

result= itc.findContinuityRK4(fe);

return result;

}

public static void main(String arg[])
{

String s[]={"CO","02","C02"};
double N1[][]={{1.0,0.0},{0.5,0.0},{0.0,1.0}};
double N[[J[1={N1};
double P=101.325; //kPa
equilibrium_SP eg=new equilibrium_SP(s,N,P);
double Tproduct=3000;//degree K
double Treactant=3000;//degree K
/linput moles
/ICO+H20+N2-->
double n0[]={1,1,0};
/loutput mole first estimates
double high[]={1.0,1.0,1.0};
eg.calculate(Tproduct, Treactant,P,n0,high);
String s1[]={"x initial guess","x","y=Ff(x)"};
Text.printT(eq.result,s1,"Newton_continuation");

{

String s[]={"CO","02","C0O2","N2"};
double

N1[[={{1.0,0.0},{0.5,0.0},{0.0,1.0},{1.88,1.88}};
double N[]J[[1={N1};
double P=101.325; //kPa
equilibrium_SP eg=new equilibrium_SP(s,N,P);
double Tproduct=3000;//degree K
double Treactant=3000;//degree K
/linput moles
/ICO+H20+N2-->
double n0[]={1,1,0,1.88};
/loutput mole first estimates
double high[]={1.0,1.0,1.0,2.0};
eq.calculate(Tproduct, Treactant,P,n0,high);
String s1[]={"x initial guess","x","y=f(x)"};
Text.printT(eq.result,s1,"Newton_continuation™);

3

i
|| Newton_continuation - 0O X

|£) Newton_continuation - 0 X

K initial guess i y=fl)
(1.3406696157029702 0 3406696157029702 4 2220219305111 33E-6
|U.57034?29425U¢498 0 6703472042504498 1.3548075638970478E-7
|U.5593256528142379 ) 6593266528142379 1.327369465564665E-5

To compare the results let us also run equlibrium_PG
for the same conditions:

|4/ Mewton_continuation - 0 X

winitial guess X y=fn)
0.049084885297797864 |0.3421068814833881 (0.0
04174016135657407  |0.671053440741694 (0.0
05199888066313930  |0.6A7893118516612 |00

For T=3000 K and P=1.01325 bar, if N2 is added to
the reaction. Equilibrium reaction is still the same:
c:o%o2 = CO,

The reaction will be
CO+0,+1.88N>=>ngCO+n;0,+n,CO»+1.88N>
Find the equilibrium composition.

| public static void main(String arg[])

xinitial quess 1 y=fl)

0.4237119081525775  |0.4237119081525775  |3.5451650144402426E-6

0.7118707072048843  |0.7118707072048843  |2.30203642671501E-6

05762922524844812  |0.5762922534844812  |2.2552501910411138E7

18799057121256034  [1.8799057131256034  |[1.6311727337958715E-5

To compare the results let us also run
equlibrium_PG for the same conditions:

| 5] Newton_continuation - 0 X

xinitial guess X y=f{x)

0.17901996274748555  |0.42524996056811837  |0.0

0.33504904730880185  |0.7126249802340592 |00

0.5567586223733005  |0.5747500394318816 0.0

18905350157358185  |1.88 0.0

For T=3000 K and P=1000 kPa, if N2 is added to
the reaction. Equilibrium reaction is still the same:

CO+£OZ‘_—" CO, Thereactionwillbe €O +
2

0, - nyCO +n,0, +n,CO,
|£| Newton_continuation - 0o X

xinitial quess X y=flx)

0.1471735996531205  |0.1471735996531205  |1.2957901418531037E-..

0.5730024677072117  |0.5735924677072117  |-6.902536369146617E-6

0.8528203350640902  |0.8528203350640002  |-2.799026342037436E-6

To compare the results let us also run
equlibrium_PG for the same conditions:

| 5] Newton_continuation - 0 X
xinitial quess X y=flx)

0.0 0.14799227182627473 (0.0

0.0 05739961358631375  |0.0

0.0 0.8520077280737253 |00




| %) Equilibrium Chemical Reaction - 0o X

reactant= 3000.0 degree K
Tproduct = 3000.0 degree K
P =101.325 bar

Equilibrium Reaction - CO+0502=C02
Equilibrium constant K = 3.054925273465477
Equilibrium constant Ink = 1.1167551319202933

Equilibrium Reaction  CO+H20 = CO2 +H2
Equilibrium constant K = 5.5501404532168915E-5
Equilibrium constant Ink = -9.7974819634039

name nOmolein | x0moleratioin| nmoleout |xmale ratio out
co 10 05 0.992611081... |0.496302593...
H20 1.0 0.5 0.992587331... |0.496290718...
co2 00 0.0 0.007388914... |0.003694437...
H2 0.0 0.0 0.007412668... |0.003706312...
02 00 0.0 1.187503614... |5.937482619...
[total 20 1 2.000011875... 1

Example case:

For T=3000 K and P=101.325 kPa, if N2 is added
to the reaction. Equilibrium reaction is still the
same:

CO+%OZ~——‘ CO, N, +1/20, = 2NO

The reaction willbe €O + 0, - nyCO +
n,0, +n,C0, + nzN, + n,NO
Sample program:
import java.util.*;
import java.awt.*;
import java.applet.Applet;
import java.util.*;
import java.awt.*;
import java.applet.Applet;
import java.awt.event.*;
import javax.swing.*;
public class equilibrium1_SP
{ public static void main(String arg[])
{ chemicalReaction_SP r[]J=new chemicalReaction_SP[2];
String s[]={"C0O","02","C02","N2","NO"};
double
N1[[]={{1.0,0.0},{0.5,0.0},{0,1},{0.0,0.0},{0.0,0.0}};
r[0]=new chemicalReaction_SP("'r0",s,N1);
double
N2[][]={{0.0,0.0},{1.0,0.0},{0.0,0.0},{1.0,0.0},{0.0,2.0}};
r[1]=new chemicalReaction_SP("'r1",s,N2);
double Tproduct=3000.0;//degree K
double Treactant=3000.0;//degree K
double n0[]={1.0,1.0,0.0,1.88,0.0};
double P=101.325;//kPa

if_equilibrium_SP fe=new
if_equilibrium_SP(n0,s,r, Treactant, Tproduct,P);

double n[]={0.51,0.52,0.53,0.54,0.55};

/Idouble r1[]=fe.func(n);

/ldouble [ ri=
continuity.continuationRK6(fe,n,4);

double 0 ri=

continuityi.newton_continuationRK6(fe,n);

4. Results and conclusion
Stoichiometric chemical equilibrium algorithm is
developed by using Schereiber and Pitzer real gas
EoS. Schereiber and Pitzer EoS is relatively

String
ss[]={"nCO","nH20","nC0O2","nH2","n02"};
String ss1="Equilibrium
CO+"+'\u00BD'+"02"+"u21C4'+" CO2 \n";
ss1+="CO+"+"at T="+Tproduct+" K ";
fe.equilibrium_print(rl);

reaction

1}

| £ Equilibrium Chemical Reaction - o X

Treactant = 3000.0 degree K
Tproduct =3000.0 degree K
P =101325bar

Equilibrium Reaction :CO+0.502 = C02
Equilibrium constant K = 3.0553054547259464
Equilibrium constant Ink = 1.1168795728057161

Equilibrium Reaction 02 +N2 = 20MN0
Equilibrium constant K = 0.014983741237240755
Equilibrium constant InK =-4.2007895832606374

name ndmolein | x0moleratioin| nmoleout |xmole ratio out
CO 10 0.257731958... |0.434849576... |0.120878017...
02 10 01257731958 |0.650927268 . |0 180042564,
C02 00 00 (1565150423 (0.157098607 ..
12 188 (1484536082 [1.813502480... |0504111298 .
MO 00 0.0 (1.132995039... (0.036969512...
|total 388 1 3507424788, [1

To compare the results let us also run
equlibriuml_PG (Perfect gas) for the same
conditions:

|£| Equilibrium Chemical Reaction - 0 X

Treactant=3000.0 degree K
Tproduct = 3000.0 degree K
P =101.325 bar

Equilibrium Reaction - CO+0502 = C0O2
Equilibrium constant K = 3.0346607625094837
Equilibrium constant Ink = 1.1100996431437236

Equilibrium Reaction - 02+N2 = 20N0
Equilibrium constant K= 0.014824103484176143
Equilibrium constant Ink =-4.2047776395695295

name n0molein | x0moleratioin| nmole out | xmaole ratio out
co 1.0 (.257731958... |0.436381569.. |0.121278052...
02 1.0 (.257731958... |0.651780644... |0.181141213..
co2 0.0 0.0 (1563618430 |0.156639385..
N2 188 (.484536082... |1.813589859... |0.504028265..
NG 0.0 0.0 0132820281 |0.036913073..
!total 388 1 3588180784 |1

unknown equation of states that generalised gas
relations by using Pitzer coefficients. Equilibrium
calculations are based on atomic mass balances and
minimisation of gibbs energy. Stoichimetric



chemical equilibrium concepts is used in
calculations, required equilibrum equations are
defined as an input parameter, and chemical
equilibrium coefficients are calculated by using only
temperature dependent components of gibbs energy.
In order to compare the results, perfect gas base
calculations are also carried out. The most notable

difference of ideal gas based calculations and real
gas based calulations are that ideal gas equations are
based on pressure while real gas equations are based
on fugacity. Results seems not deviates much,
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6. Nomenclature

Z Compressibility factor
P Pressure
p density
R Gas constant
T Temperature
B,C,D,E,F,G Schereiber-Pitzer EoS constants
T, Reduced pressure
Te Critical temperature
A Helmholts energy
H, h Enthalpy
G, Gibbs free energy
S;s Entropy
f Fugacity
% Specific volume
Co Specific heat at constant pressure
Chemical potential
i Atom matrix

Homotophy(continuity) variable
Mole numbers
Molecular weight
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