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Abstract In stoichiometric (based on K equilibrium constants)  thermodynamic property algorithms, it is usually 

ideal gas EOS is used. The basic reason for this is simplicity of using ideal gas EOS. Real gas equation of states 

involves complicated mathematical procedures such as root finding processes, which is time consuming as well as 

requires long algorithms. Ideal gas based equilibrium calculations are usually satisfies requirements for chemical 

reactions at athmospheric pressure zone. An equation of state with better accuracy of thermodynamic properties 

will be required for extreme cases, such as gas turbine combustion chamber.  In this study Scheireber-Pitzer real 

gas equation of state will be used to predict thermodynamic properties of gases. This is a generalised EoS for gases 

based on Pitzer’s acentric factor.  Stoichiometric formulations requires equlibrium formulations. Atomic balances  

gives equalibrium chemical moles as much as number of available atoms, for each additional chemical an 

additional equiibrium formulations is needed.  When equations came together, they created quite a nonlinear 

system of equation. These set of equation can be solved by linearisation methods. In this study, it is prefer to solve 

directly in non-linear form by using homotophy(continuation) method. Continuation method is relatively less 

dependent to initial conditions. It is based on solution of a differential equation system by using a numerical soltion 

method. 6th degree Runge-Kutta method is used to solve differential equation to obtain non-linear equation 

solution by continuation method. All the codes are developed in java programming language. The program code 

are given to interested researchers as free access in www.turhancoban.com adress. 

Keywords: Thermodynamic properties of gases, Schereiber-Pitzer EoS, chemical equilibrium, Stochiometric 
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1. Formulation of Equation of State  

In this paper, We will consider  Scheiber-Pitzer 

equation of states for pure gases. Details of the 

Scheiber-PitzerEoS is given below. 

𝑍 =
𝑃

𝜌𝑅𝑇
= 1 + 𝐵(𝑇𝑟, 𝜌𝑟)𝜌𝑟 + 𝐶(𝑇𝑟, 𝜌𝑟)𝜌𝑟

2 + 𝐷(𝑇𝑟, 𝜌𝑟)𝜌𝑟
3 +

𝐸(𝑇𝑟, 𝜌𝑟)𝜌𝑟
5 + 𝐹(𝑇𝑟, 𝜌𝑟)𝜌𝑟

7 + 𝐺(𝑇𝑟, 𝜌𝑟)𝜌𝑟
8 + 𝐻(𝑇𝑟, 𝜌𝑟)𝜌𝑟

10 +
𝐼(𝑇𝑟, 𝜌𝑟)𝜌𝑟

12  (1.1) 

𝐵(𝑇𝑟, 𝜌𝑟) = 𝑐1 +
𝑐2
𝑇𝑟
+
𝑐3
𝑇𝑟
2
+
𝑐4
𝑇𝑟
6
 

𝐶(𝑇𝑟, 𝜌𝑟) = 𝑐5 +
𝑐5
𝑇𝑟
+
𝑐7
𝑇𝑟
3
+
𝑐8
𝑇𝑟
4
exp(−𝜌𝑟

2)

= 𝐶1(𝑇𝑟) + 𝐶2(𝑇𝑟) exp(−𝜌𝑟
2) 

𝐷(𝑇𝑟, 𝜌𝑟) = 𝑐9 +
𝑐10
𝑇𝑟
+
𝑐11
𝑇𝑟
2

 

𝐸(𝑇𝑟, 𝜌𝑟) =
𝑐12
𝑇𝑟
2
+
𝑐13
𝑇𝑟
3

 

𝐹(𝑇𝑟, 𝜌𝑟) =
𝑐14
𝑇𝑟
2
+
𝑐15
𝑇𝑟
3

 

𝐺(𝑇𝑟, 𝜌𝑟) =
𝑐16
𝑇𝑟
3
+ (

𝑐17
𝑇𝑟
3
+
𝑐18
𝑇𝑟
4
) exp⁡(−𝜌𝑟

2)

= 𝐺1(𝑇𝑟) + 𝐺2(𝑇𝑟) exp(−𝜌𝑟
2) 

𝐻(𝑇𝑟, 𝜌𝑟) = (
𝑐19
𝑇𝑟
3
+
𝑐20
𝑇𝑟
4
) exp(−𝜌𝑟

2) = 𝐻2(𝑇𝑟) exp(−𝜌𝑟
2) 

𝐼(𝑇𝑟, 𝜌𝑟) = (
𝑐21
𝑇𝑟
3
+
𝑐22
𝑇𝑟
4
) exp(−𝜌𝑟

2) = 𝐼2(𝑇𝑟) exp(−𝜌𝑟
2) 

𝑐𝑖 = 𝐶𝑖,0 + 𝐶𝑖,1𝜔 + 𝐶𝑖,2𝜔
2 

Where 𝜔in Scheiber-Pitzer equation of states 

coefficient is called Pitzer’s accentric factor. This 

factor is calculated as 
𝜔 = −𝑙𝑜𝑔10𝑃𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑⁡𝑣𝑎𝑝𝑜𝑟(𝑎𝑡⁡𝑇𝑟 = 0.7) − 1⁡⁡⁡(1.2) 

 

Table 1.1 C[i][j] Coefficients of Scheiber-Pitzer 

EoS 

 j=1 j=2 j=3 

C1,j 0.4422590000 0.7256500000 0.0000000000 

C2,j -0.9809700000 0.2187140000 0.0000000000 

C3,j -0.6111420000 -1.2497600000 0.0000000000 

C4,j -0.0051562400 -0.1891870000 0.0000000000 

C5,j 0.1513654000 2.3067060000 

-

10.4117400000 

C6,j -0.0438262500 4.6960680000 15.1414600000 

C7,j 1.1026990000 3.1293840000 -9.5214090000 

C8,j -0.6361056000 0.3266766000 2.9046220000 

C9,j 0.0087596260 -3.2040990000 8.0023380000 

C10,j 0.3412103000 8.8721690000 

-

14.4038600000 

C11,j -0.8842722000 -6.6874710000 11.7685400000 
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C12,j 0.1375109000 0.2432806000 -0.5515101000 

C13,j -0.1443457000 1.2869320000 -2.1809880000 

C14,j -0.0059695540 0.0454196100 0.0000000000 

C15,j 0.0245053700 -0.4158241000 0.7914067000 

C16,j -0.0041995900 0.0910596000 -0.1786378000 

C17,j 0.0004665477 -1.2620280000 -2.8267720000 

C18,j -0.0194510100 0.7812220000 4.1900460000 

C19,j 0.0408364300 1.3988440000 0.0000000000 

C20,j -0.0354691700 -1.4560410000 0.0000000000 

C21,j -0.0028779550 0.2104505000 0.0000000000 

C22 0.0058962650 0.2191255000 0.0000000000 
 

 

Derivatives of the equations: 
𝜕𝐵(𝑇𝑟, 𝜌𝑟)

𝜕𝑇
=
1

𝑇𝑐
[−

𝑐2
𝑇𝑟
2
− 2

𝑐3
𝑇𝑟
3
− 6

𝑐4
𝑇𝑟
7
] 

𝜕𝐶(𝑇𝑟, 𝜌𝑟)

𝜕𝑇
=
1

𝑇𝑐
[−

𝑐5
𝑇𝑟
2
− 3

𝑐7
𝑇𝑟
4
− 4

𝑐8
𝑇𝑟
5
exp⁡(−𝜌𝑟

2)] 

𝜕𝐷(𝑇𝑟, 𝜌𝑟)

𝜕𝑇
=
1

𝑇𝑐
[−
𝑐10
𝑇𝑟
2
− 3

𝑐11
𝑇𝑟
4
] 

𝜕𝐸(𝑇𝑟, 𝜌𝑟)

𝜕𝑇
=
1

𝑇𝑐
[−
𝑐12
𝑇𝑟
2
− 3

𝑐13
𝑇𝑟
4
] 

𝜕𝐹(𝑇𝑟, 𝜌𝑟)

𝜕𝑇
=
1

𝑇𝑐
[−2

𝑐14
𝑇𝑟
3
− 3

𝑐13
𝑇𝑟
4
] 

𝜕𝐺(𝑇𝑟, 𝜌𝑟)

𝜕𝑇
=
1

𝑇𝑐
[−3

𝑐16
𝑇𝑟
4
+ (−3

𝑐17
𝑇𝑟
4
− 4

𝑐18
𝑇𝑟
5
) exp⁡(−𝜌𝑟

2)] 

𝜕𝐻(𝑇𝑟, 𝜌𝑟)

𝜕𝑇
=
1

𝑇𝑐
[(−3

𝑐19
𝑇𝑟
4
− 4

𝑐18
𝑇𝑟
5
) exp⁡(−𝜌𝑟

2)] 

𝜕𝐼(𝑇𝑟, 𝜌𝑟)

𝜕𝑇
=
1

𝑇𝑐
[(−3

𝑐21
𝑇𝑟
4
− 4

𝑐22
𝑇𝑟
5
) exp⁡(−𝜌𝑟

2)]⁡⁡⁡⁡(1.3) 

 

Helmholtz energy equation will be used to predict 

other thermodynamic properties 
𝑑𝐴 = −𝑆𝑑𝑇 − 𝑃𝑑𝑣⁡⁡⁡(1.4) 

𝜕𝐴

𝜕𝑣
|
𝑇

= −𝑃 

𝑑𝐴 = −𝑃𝑑𝑣 =
𝑃

𝜌2
𝑑𝜌 

𝐴 − 𝐴0 = ∫
𝑃

𝜌2
𝑑𝜌

𝜌

𝜌0

= ∫
𝑃

𝜌2
𝑑𝜌

𝜌

0

+ ∫
𝑃

𝜌2
𝑑𝜌

0

𝜌0

= ∫
𝑃

𝜌2
𝑑𝜌

𝜌

0

+ ∫
𝜌𝑅𝑇

𝜌2
𝑑𝜌

0

𝜌0

 

 

The second term (limits between low density 

𝜌0⁡𝑎𝑛𝑑⁡𝑑𝑒𝑛𝑠𝑖𝑡𝑦⁡0)⁡can be defined as an ideal state 

case where 𝑃 = 𝜌𝑅𝑇. Now we can add and substract 

ideal gas density term of the equation 

𝐴 − 𝐴0 = ∫
𝑃

𝜌2
𝑑𝜌

𝜌

𝜌0

= ∫
𝑃

𝜌2
𝑑𝜌

𝜌

0

+ ∫
𝜌𝑅𝑇

𝜌2
𝑑𝜌

0

𝜌0

+∫
𝜌𝑅𝑇

𝜌2
𝑑𝜌

𝜌

0

−∫
𝜌𝑅𝑇

𝜌2
𝑑𝜌

𝜌

0

⁡⁡⁡(1.5) 

Considering for real EoS⁡𝑃 = 𝑍𝜌𝑅𝑇 equation 

becomes 

𝐴 − 𝐴0 = ∫
𝑃

𝜌2
𝑅𝑇[𝐵(𝑇𝑟, 𝜌𝑟)𝜌𝑟 + 𝐶(𝑇𝑟, 𝜌𝑟)𝜌𝑟

2 +𝐷(𝑇𝑟, 𝜌𝑟)𝜌𝑟
3

𝜌

𝜌0

+ 𝐸(𝑇𝑟, 𝜌𝑟)𝜌𝑟
5 + 𝐹(𝑇𝑟, 𝜌𝑟)𝜌𝑟

7

+ 𝐺(𝑇𝑟, 𝜌𝑟)𝜌𝑟
8 + 𝐻(𝑇𝑟, 𝜌𝑟)𝜌𝑟

10

+ 𝐼(𝑇𝑟, 𝜌𝑟)𝜌𝑟
12]𝑑𝜌

= ∫
𝑃

𝜌2
𝑑𝜌

𝜌

0

+ ∫
𝜌𝑅𝑇

𝜌2
𝑑𝜌

0

𝜌0

+∫
𝜌𝑅𝑇

𝜌2
𝑑𝜌

𝜌

0

−∫
𝜌𝑅𝑇

𝜌2
𝑑𝜌⁡⁡⁡⁡(1.6)

𝜌

0

 

𝐴 − 𝐴0 = ∫
𝑍𝜌𝑅𝑇 − 𝜌𝑅𝑇

𝜌2
𝑑𝜌

𝜌

0

+ ∫
𝜌𝑅𝑇

𝜌2
𝑑𝜌

𝜌

𝜌0

 

𝐴 − 𝐴0 = ∫
𝑅𝑇(𝑍 − 1)

𝜌
𝑑𝜌

𝜌

0

+ ∫
𝜌𝑅𝑇

𝜌2
𝑑𝜌

𝜌

𝜌0

 

𝐴 − 𝐴0 = ∫
1

𝜌𝑟
𝑑𝜌𝑟

𝜌𝑟

0

+ ∫
𝑅𝑇

𝜌𝑟
𝑑𝜌𝑟

𝜌𝑟

𝜌𝑟0

 

𝐴 − 𝐴0 = 𝑅𝑇∫ [𝐵(𝑇𝑟, 𝜌𝑟) + 𝐶(𝑇𝑟, 𝜌𝑟)𝜌𝑟
⁡ + 𝐷(𝑇𝑟, 𝜌𝑟)𝜌𝑟

2

𝜌𝑟

0

+ 𝐸(𝑇𝑟, 𝜌𝑟)𝜌𝑟
4 + 𝐹(𝑇𝑟, 𝜌𝑟)𝜌𝑟

6

+ 𝐺(𝑇𝑟, 𝜌𝑟)𝜌𝑟
7 + 𝐻(𝑇𝑟, 𝜌𝑟)𝜌𝑟

9

+ 𝐼(𝑇𝑟, 𝜌𝑟)𝜌𝑟
11]𝑑𝜌𝑟 + 𝑅𝑇𝑙𝑛

𝜌𝑟
𝜌𝑟0

⁡⁡⁡(1.7) 

Some of the  terms in this integration includes terms 

of exponential and power multiplications. This 

integrations are carried out as follows: 

𝐾(𝑚, 𝜌𝑟) = ∫ 𝜌𝑟
𝑚exp⁡(−𝜌𝑟

2)𝑑𝜌𝑟

𝜌𝑟

0

= ∫ ∑(−1)𝑛
𝜌𝑟
2𝑛+𝑚

𝑛!
𝑑𝜌𝑟

∞

𝑛=0

𝜌𝑟

0

=∑(−1)𝑛
𝜌𝑟
2𝑛+𝑚+1

(2𝑛 + 𝑚+ 1)𝑛!

∞

𝑛=0

⁡⁡⁡⁡(1.8) 

Handling these terms such as above Taylor series are 

much easier than taken numerical integration, then 

Helmholtz departure function becomes: 

𝐴 − 𝐴0 = 𝑅𝑇(𝐵𝜌𝑟 + 𝐶1
𝜌𝑟
2

2
+ 𝐶2𝐾(1, 𝜌𝑟) + 𝐷

𝜌𝑟
3

3
+ 𝐸

𝜌𝑟
5

5
+ 𝐹

𝜌𝑟
7

7

+ 𝐺1
𝜌𝑟
8

8
+ 𝐺2, 𝐾(8, 𝜌𝑟) + 𝐻2𝐾(10, 𝜌𝑟)

+ 𝐼2𝐾(12, 𝜌𝑟)) + 𝑅𝑇𝑙𝑛 (
𝜌𝑟
𝜌𝑟0
)⁡⁡(1.9) 

Entropy departure function: 

𝑆 − 𝑆0 = −
𝜕(𝐴 − 𝐴0)

𝜕𝑇
|
𝜌

⁡⁡⁡(1.10) 

𝑆 − 𝑆0 = 𝑅(𝐵𝜌𝑟 + 𝐶1
𝜌𝑟
2

2
+ 𝐶2𝐾(1, 𝜌𝑟) + 𝐷

𝜌𝑟
3

3
+ 𝐸

𝜌𝑟
5

5
+ 𝐹

𝜌𝑟
8

8

+ 𝐺1
𝜌𝑟
9

9
+ 𝐺2, 𝐾(8, 𝜌𝑟) + 𝐻2𝐾(10, 𝜌𝑟)

+ 𝐼2𝐾(12, 𝜌𝑟))

+ 𝑅𝑇(
𝑑𝐵

𝑑𝑇
𝜌𝑟 +

𝑑𝐶1
𝑑𝑇

𝜌𝑟
2

2
+
𝑑𝐶2
𝑑𝑇

𝐾(1, 𝜌𝑟)

+
𝑑𝐷

𝑑𝑇

𝜌𝑟
3

3
+
𝑑𝐸

𝑑𝑇

𝜌𝑟
5

5
+
𝑑𝐹

𝑑𝑇

𝜌𝑟
8

8
+
𝑑𝐺1
𝑑𝑇

𝜌𝑟
9

9

+
𝑑𝐺2
𝑑𝑇

𝐾(8, 𝜌𝑟) +
𝑑𝐻2
𝑑𝑇

𝐾(10, 𝜌𝑟)

+
𝑑𝐼2
𝑑𝑇

𝐾(12, 𝜌𝑟)) + 𝑅𝑙𝑛 (
𝜌𝑟
𝜌𝑟0
) 

Enthalpy departure function: 



 

𝐻 − 𝐻0 = (𝐴 − 𝐴0) + 𝑇(𝑆 − 𝑆0) + 𝑅𝑇(𝑍 − 1)⁡⁡⁡(1.11)⁡⁡ 

Internal energy departure function: 
𝑈 −𝑈0 = (𝐴 − 𝐴0) + 𝑇(𝑆 − 𝑆0)⁡⁡⁡⁡⁡⁡(1.12) 

Gibbs energy departure function: 
𝐺 − 𝐺0 = (𝐴 − 𝐴0) + 𝑅𝑇(𝑍 − 1)⁡⁡⁡⁡⁡⁡(1.13)⁡ 

The fugacity-pressure ratio: 

𝑙𝑛
𝑓

𝑃
=
(𝐴 − 𝐴0)

𝑅𝑇
+ 𝑙𝑛

𝑣

𝑣0
+ (𝑍 − 1) − ln(𝑍)⁡⁡(1.14)⁡ 

Data is also needed to solve ⁡𝐶𝑝(𝑇) value. In order to 

establish that, NIST tables given at the address 

https://janaf.nist.gov/ is used. The following partial 

continuous formulation is taken. the following 

partial difference curve fitting formula is used 

⁡𝐶𝑝𝑖(𝑇) = 𝐴𝑖 +𝐵𝑖10
−3𝑇 +

𝐶𝑖10
5

𝑇2
+ 𝐷𝑖10

−6𝑇2𝑇𝐿𝑖 ≤ 𝑇

≤ 𝑇𝐻𝑖⁡⁡(1.15) 

As an example case of Partial continuous curve 

fitting of Cp values Data for Nitrogen is given below. 

 
Figure 1.1 Cp of Nitrogen kJ/(kmolK) 

 
Figure 1.2  Error of Cp in Nitrogen kJ/(kmolK) 

 

 

 

 

Table 1.2      Cp (kJ/kmol K) partial continious curve 

fitting equations for  N2 Nitrogen 

i Ai Bi Ci Di Tli   K Thi K 

0 29.408631 -2.251447 -0.012473 4.520889 100 350 

1 27.646169 0.882356 0.770074 4.764423 350 700 

2 21.601706 14.878414 3.812808 -4.165467 700 1200 

3 29.830766 5.421561 -15.043096 -1.089614 1200 1700 

4 35.476742 0.973583 -42.547627 -0.097466 1700 2200 

5 34.928203 1.319404 -38.184192 -0.159911 2200 2700 

6 36.262526 0.581500 -50.898362 -0.045731 2700 3200 

7 35.657341 0.766169 -34.665936 -0.059817 3200 3700 

8 36.418045 0.432596 -44.184706 -0.020152 3700 4200 

9 38.077688 -0.152960 -80.311808 0.036794 4200 4700 

10 37.760284 -0.049949 -73.101156 0.027769 4700 5200 

11 39.973855 -0.854555 -77.575938 0.101253 5200 6000 

 

For some gases only data is available is in 

polynomial curve fitting format, for this cases 

polynomial form is assumed. 

 

2. Stoichiometric chemical equilibrium 

formulations 

 

Actual products formed in a reaction is not a clear 

cut concept. The actual products formed in a 

chemical reactions can only be determined 

experimentally and as a function of the 

environmental values such as temperature, pressure 

and time. When these parameters changed actual 

products can change as well. One way of estimating 

what products will be formed is to use equilibrium 

concept. All physical systems are tend to minimize 

their energy levels when there are no any external 

force or energy to the system. For example a bubble 

takes spherical shape under the influence of surface 

tension which has the minimal area for the given 

volume. Chemical reactions when temperature and 

pressure is constant and long enough time is given, 

tends to minimize it energy level, specifically gibbs 

free energy level (or maximize its entropy level). 

This state is called chemical equilibrium. For 

example consider a closed system consisting initially 

of a gaseous mixture of carbondioxide , oxygen and 

carbonic acid. A reaction might take place is  

 

𝐶𝑂2 + 𝐻2𝑂 ⇄ 𝐻2𝐶𝑂3 

 

At equilibrium the system will consist basically of 

three components, CO2, H2CO3 and H2O, for not all 

the components gases. This is what is called soda 

reaction. When soda bottle opened equailibrium 

condition (pressured in the system) is changed and 

rection slides to a new equilibrium states, so that 

some omount of CO2 and  H2O is formed and amount 

of carbonic acid is reduced .  Changes in the amounts 

i Ai Bi Ci Di Tli   K Thi K 

0 
29.4086307829 -2.2514470327 -0.0124732186 4.5208886188 100 350 

1 
27.6461690069 0.8823555268 0.7700742081 4.7644228675 350 700 

2 
21.6017064500 14.8784143146 3.8128084889 -4.1654669506 700 1200 

3 
29.8307659455 5.4215607907 -15.0430960215 -1.0896138268 1200 1700 

4 
35.4767415122 0.9735825946 -42.5476274875 -0.0974664401 1700 2200 

5 
34.9282028043 1.3194039653 -38.1841919451 -0.1599114820 2200 2700 

6 
36.2625256395 0.5815001033 -50.8983620805 -0.0457311313 2700 3200 

7 
35.6573409828 0.7661686027 -34.6659363416 -0.0598170521 3200 3700 

8 
36.4180454205 0.4325957723 -44.1847062013 -0.0201521727 3700 4200 

9 
38.0776880528 -0.1529603974 -80.3118075101 0.0367938172 4200 4700 

10 
37.7602843891 -0.0499492999 -73.1011559910 0.0277685442 4700 5200 

11 
39.9738552178 -0.8545553355 -77.5759376892 0.1012534665 5200 6000 

https://janaf.nist.gov/


of these components during the opening of soda 

bottle: 

𝑑𝑛𝐶𝑂2 = −𝑑𝑛𝐻2𝐶𝑂3⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

𝑑𝑛𝐻2𝑂 = −𝑑𝑛𝐻2𝐶𝑂3 ⁡⁡⁡⁡⁡⁡⁡(2.1) 

where dn denotes the differential change in the 

representative component. 

−
𝑑𝑛𝐶𝑂2
1

= −
𝑑𝑛𝐻2𝑂

1
=
𝑑𝑛𝐻2𝐶𝑂3

1
⁡⁡⁡⁡⁡⁡⁡(2.2) 

Equilibrium is a condition of balance. When 

equilibrium is established amount of CO2 and H2O 

and H2CO3 tends to be balanced with each other. But 

when equilibrium is broken and a new conditions 

arise, like opening of a soda bottle, a new 

equilibrium will be established. And during these 

process total gibbs free energy of the system will be 

minimised. 

𝑑𝐺(𝑇, 𝑃) = 0⁡⁡(2.3) 
This amount can be determined from chemical 

potential changes (see the first chapter for details) 

𝜇𝐶𝑂2 =
𝜕𝐺(𝑇,𝑃,𝑛)

𝜕𝑛𝐶𝑂2
      𝜕𝐺(𝑇, 𝑃, 𝑛) = 𝜇𝐶𝑂2𝜕𝑛𝐶𝑂2 

𝜇𝑛𝐻2𝐶𝑂3 =
𝜕𝐺(𝑇,𝑃,𝑛)

𝜕𝑛𝐻2𝐶𝑂3
      𝜕𝐺(𝑇, 𝑃, 𝑛) = 𝜇𝐻2𝐶𝑂3𝜕𝑛𝐻2𝐶𝑂3 

𝜇𝐻2𝑂 =
𝜕𝐺(𝑇,𝑃,𝑛)

𝜕𝑛𝐻2𝑂
      𝜕𝐺(𝑇, 𝑃, 𝑛) = 𝜇𝐻2𝑂𝜕𝑛𝐻2𝑂 

𝑑𝐺(𝑇, 𝑃) = −1 ∗ 𝜇𝐶𝑂2𝑑𝑛𝐶𝑂2 − 1 ∗ 𝜇𝐻2𝑂𝑑𝑛𝐻2𝑂 + 1

∗ 𝜇𝐻2𝐶𝑂3𝑑𝑛𝐻2𝐶𝑂3 = 0⁡⁡⁡⁡⁡⁡(2.4) 

𝑑𝐺(𝑇, 𝑃) = (−1 ∗ 𝜇𝐶𝑂2 − 1 ∗ 𝜇𝐻2𝑂 + 1 ∗ 𝜇𝐻2𝐶𝑂3)𝑑𝑛𝐻2𝑂
= 0⁡⁡⁡(2.5) 

This is called the equilibrium reaction.For a more 

general equilibrium equation such as: 

𝜐𝐴𝐴 + 𝜐𝐵𝐵 ⇄ 𝜐𝐶𝐶 + 𝜐𝐷𝐷⁡⁡⁡⁡⁡(2.6) 

where 𝜐 ‘s are stoichiometric coefficients. The 

following equilibrium case is existed: 

−
𝑑𝑛𝐴
𝜐𝐴

= −
𝑑𝑛𝐵
𝜐𝐵

=
𝑑𝑛𝐶
𝜐𝐶

=
𝑑𝑛𝐷
𝜐𝐷

= 𝑑𝜀⁡⁡⁡⁡⁡(2.7) 

where 𝑑𝜀 is the proportionality factor. From which 

the following expressions are obtained. 

𝑑𝑛𝐴 = −𝜐𝐴⁡𝑑𝜀 

𝑑𝑛𝐵 = −𝜐𝐵 ⁡𝑑𝜀 
𝑑𝑛𝐶 =⁡𝜐𝐶 ⁡𝑑𝜀 

𝑑𝑛𝐷 =⁡𝜐𝐷 ⁡𝑑𝜀 

 (2.8)   

For this case the Gibbs free energy equation takes 

form: 

𝑑𝐺(𝑇, 𝑃) = −𝜐𝐴 ∗ 𝜇𝐴 − 𝜐𝐵 ∗ 𝜇𝐵 + 𝜐𝐶 ∗ 𝜇𝐶 + 𝜐𝐷
∗ 𝜇𝐷 = 0⁡⁡⁡⁡⁡⁡(2.9) 

For ideal gas mixtures chemical potential can be 

expressed as specific gibbs free energy as 

ℎ𝑇𝑖(𝑇) = ℎ𝑖(𝑇) − ℎ(298.15) + ∆ℎ𝑓(298.15) 

𝑔0(𝑇) = ℎ𝑇𝑖(𝑇) − 𝑇𝑠
0(𝑇) 

𝜇𝑖 = 𝑔𝑖
0(𝑇) − 𝑅𝑇𝑙𝑛 (

𝑃𝑖
𝑃𝑟𝑒𝑓

)⁡⁡⁡⁡⁡(2.10) 

where Pi is the partial pressure of the gas. For and 

ideal gas, partial pressure can be expressed as a 

function of components in the total components 

𝑦𝑖 =
𝑛𝑖

𝑛𝑡𝑜𝑡𝑎𝑙
     𝑃𝑖 = 𝑦𝑖𝑃     𝑃𝑖 =

𝑛𝑖

𝑛𝑡𝑜𝑡𝑎𝑙
𝑃    (2.11) 

Substituting these into the equation gives: 

𝜇𝑖 = 𝑔𝑖
0(𝑇) − 𝑅𝑇𝑙𝑛 (

𝑛𝑖
𝑛𝑡𝑜𝑡𝑎𝑙

⁡⁡⁡⁡
𝑃

𝑃𝑟𝑒𝑓
)⁡⁡⁡⁡⁡(2.12) 

For a real gas  mixtures chemical potential can be 

expressed as specific gibbs free energy as 

ℎ𝑇𝑖(𝑇, 𝑃) = ℎ𝑖(𝑇, 𝑃) − ℎ(298.15, 𝑃)

+ ∆ℎ𝑓(298.15)⁡⁡⁡(2.13) 

𝑠(𝑇, 𝑃) = 𝑠0(𝑇) − 𝑅𝑙𝑛 (
𝑓𝑖
𝑃𝑟𝑒𝑓

)⁡⁡⁡⁡(2.14)⁡⁡ 

𝑔(𝑇, 𝑃) = 𝑔0(𝑇, 𝑃) − 𝑅𝑇𝑙𝑛 (
𝑓𝑖
𝑃𝑟𝑒𝑓

)⁡⁡⁡⁡(2.15)⁡ 

𝑔0(𝑇, 𝑃) = ℎ𝑇𝑖(𝑇, 𝑃) − 𝑇𝑠
0(𝑇)⁡⁡⁡(2.16) 

𝜇𝑖 = 𝑔𝑖
0(𝑇) − 𝑅𝑇𝑙𝑛 (

𝑓𝑖
𝑃𝑟𝑒𝑓

)⁡⁡⁡⁡⁡(2.17) 

Note that lim
𝑃→0

𝑓𝑖

𝑃𝑖
= 1⁡⁡⁡(2.18)  therefore  𝑃𝑟𝑒𝑓 = 𝑓𝑟𝑒𝑓 

where fi is the partial fugacity of the gas. For a real 

gas, partial pressure can be expressed as a function 

of components in the total components 

𝑦𝑖 =
𝑛𝑖

𝑛𝑡𝑜𝑡𝑎𝑙
     𝑓𝑖 = 𝑦𝑖𝑓

∗     𝑓𝑖 =
𝑛𝑖

𝑛𝑡𝑜𝑡𝑎𝑙
𝑓∗    (2.19) 

Where 𝑓∗ fugacity that component i would have if 

the entire gas had that composition at the same 

temperature and pressure.  𝑓∗ = 𝑓(𝑇, 𝑃)⁡⁡⁡(2.20) 
 

Substituting these into the equation gives: 

𝜇𝑖 = 𝑔𝑖
0(𝑇, 𝑃) − 𝑅𝑇𝑙𝑛 (

𝑛𝑖
𝑛𝑡𝑜𝑡𝑎𝑙

⁡⁡⁡⁡
𝑓∗

𝑃𝑟𝑒𝑓
)⁡⁡⁡⁡⁡(2.21) 

 

Then the basic Gibbs free energy equation becomes 

𝑑𝐺(𝑇, 𝑃) = −𝜐𝐴 [𝑔𝐴
0(𝑇) − 𝑅𝑇𝑙𝑛 (

𝑛𝐴
𝑛𝑡𝑜𝑡𝑎𝑙

⁡⁡⁡⁡⁡
𝑓∗

𝑃𝑟𝑒𝑓
)]

− 𝜐𝐵 [𝑔𝐵
0(𝑇) − 𝑅𝑇𝑙𝑛 (

𝑛𝐵
𝑛𝑡𝑜𝑡𝑎𝑙

⁡⁡⁡⁡⁡
𝑓∗

𝑃𝑟𝑒𝑓
)]

+ 𝜐𝐶 [𝑔𝐶
0(𝑇) − 𝑅𝑇𝑙𝑛(

𝑛𝐶
𝑛𝑡𝑜𝑡𝑎𝑙

⁡⁡⁡⁡⁡
𝑓∗

𝑃𝑟𝑒𝑓
)]

+ 𝜐𝐷 [𝑔𝐷
0(𝑇) − 𝑅𝑇𝑙𝑛(

𝑛𝐷
𝑛𝑡𝑜𝑡𝑎𝑙

⁡⁡⁡⁡⁡
𝑓∗

𝑃𝑟𝑒𝑓
)]

= 0⁡⁡⁡⁡⁡⁡(2.22) 

Arranging equation: 
𝑑𝐺0(𝑇, 𝑃) = −𝜐𝐴𝑔𝐴

0(𝑇, 𝑃) − 𝜐𝐵𝑔𝐵
0(𝑇, 𝑃) + 𝜐𝐶𝑔𝐶

0(𝑇, 𝑃)

+ 𝜐𝐷𝑔𝐷
0(𝑇, 𝑃)⁡⁡⁡⁡⁡⁡ 

𝑑𝐺(𝑇, 𝑃) = 𝑑𝐺0(𝑇, 𝑃)

+ 𝑅𝑇 [𝜐𝐴𝑙𝑛 (
𝑛𝐴
𝑛𝑡𝑜𝑡𝑎𝑙

⁡⁡⁡⁡
𝑓∗

𝑃𝑟𝑒𝑓
)

+ 𝜐𝐵𝑙𝑛 (
𝑛𝐵
𝑛𝑡𝑜𝑡𝑎𝑙

⁡⁡⁡⁡
𝑓∗

𝑃𝑟𝑒𝑓
)

− 𝜐𝐶𝑙𝑛 (
𝑛𝐶
𝑛𝑡𝑜𝑡𝑎𝑙

⁡⁡⁡⁡
𝑓∗

𝑃𝑟𝑒𝑓
)

− 𝜐𝐷𝑙𝑛 (
𝑛𝐷
𝑛𝑡𝑜𝑡𝑎𝑙

⁡⁡⁡⁡
𝑓∗

𝑃𝑟𝑒𝑓
)] = 0⁡(2.23) 

This equation can be written as: 

−
𝑑𝐺0(𝑇, 𝑃)

𝑅𝑇
= [𝜐𝐴𝑙𝑛 (

𝑛𝐴
𝑛𝑡𝑜𝑡𝑎𝑙

⁡⁡⁡⁡
𝑓∗

𝑃𝑟𝑒𝑓
) + 𝜐𝐵𝑙𝑛 (

𝑛𝐵
𝑛𝑡𝑜𝑡𝑎𝑙

⁡⁡⁡⁡
𝑓∗

𝑃𝑟𝑒𝑓
)

− 𝜐𝐶𝑙𝑛 (
𝑛𝐶
𝑛𝑡𝑜𝑡𝑎𝑙

⁡⁡⁡⁡
𝑓∗

𝑃𝑟𝑒𝑓
)

− 𝜐𝐷𝑙𝑛 (
𝑛𝐷
𝑛𝑡𝑜𝑡𝑎𝑙

⁡⁡⁡⁡
𝑓∗

𝑃𝑟𝑒𝑓
)]⁡⁡(2.24) 



𝑒𝑥𝑝 (−
𝑑𝐺0(𝑇, 𝑃)

𝑅𝑇
) =

[
 
 
 (

𝑛𝐴
𝑛𝑡𝑜𝑡𝑎𝑙

⁡⁡⁡⁡
𝑓∗

𝑃𝑟𝑒𝑓
)
𝜐𝐴

(
𝑛𝐵
𝑛𝑡𝑜𝑡𝑎𝑙

⁡⁡⁡⁡
𝑓∗

𝑃𝑟𝑒𝑓
)
𝜐𝐵

(
𝑛𝐶
𝑛𝑡𝑜𝑡𝑎𝑙

⁡⁡⁡⁡
𝑓∗

𝑃𝑟𝑒𝑓
)
𝜐𝐶

(
𝑛𝐷
𝑛𝑡𝑜𝑡𝑎𝑙

⁡⁡⁡⁡
𝑓∗

𝑃𝑟𝑒𝑓
)
𝜐𝐷

]
 
 
 

= [
(𝑛𝐴)

𝜐𝐴(𝑛𝐵)
𝜐𝐵

(𝑛𝐶)
𝜐𝐶(𝑛𝐷)

𝜐𝐷
] (⁡⁡

𝑓∗

𝑛𝑡𝑜𝑡𝑎𝑙𝑃𝑟𝑒𝑓
)

𝜐𝐴+𝜐𝐵−𝜐𝐶−𝜐𝐷

⁡⁡(2.25) 

The left hand side of the equation is called 

equilibrium constant, which is only function of 

temperature  

𝐾(𝑇) = 𝑒𝑥𝑝(−
𝑑𝐺0(𝑇, 𝑃)

𝑅𝑇
)⁡⁡⁡⁡(2.26) 

As an example let us evaluate equilibrium constant 

of the equilibrium reaction 

𝐶𝑂 +
1

2
𝑂2 ⇌ 𝐶𝑂2 

 
 

Equilibrium condition can be solved by solving 

chemical balance equations together with the 

equilibrium gibbs free energy minimisation 

equations. So mass balance is an important part of 

total set of equations to solve. Mass balance 

establishes as follows: 

 

∑𝐴𝑖𝑗𝑛𝑗

𝑁𝑆

𝑗=1

− 𝑏𝑖
0 = 0⁡⁡⁡⁡(𝑖 = 1. . 𝑛𝑎)⁡⁡⁡⁡(2.27) 

𝑏𝑖 =∑𝐴𝑖𝑗𝑛𝑗

𝑁𝑆

𝑗=1

⁡⁡⁡⁡(2.28)⁡⁡ 

𝑏𝑖 − 𝑏𝑖
0 = 0⁡⁡⁡⁡(𝑖 = 1. . 𝑛𝑎)⁡⁡⁡⁡⁡⁡(2.29) 

where na is the number of chemical elements. Aij is 

number of kilogram atoms per kmole of species j. 

And 
0

ib is the assigned number of kilogram atoms  

element i per kmol of total reactants.  

In order to explain this equation let us look at an 

example. If chemicals in the reaction and input 

moles re given as: 

CH4 1 kmol 

H2O 10  kmol 

H2 0 kmol 
CO2 0 kmol  

CO 0 kmol 
O2 0 kmol 

  

Aij matrix will be 

atom CH4 H2O H2 CO2 CO O2 
H 4 2 2 0 0 0 

C 1 0 0 1 1 0 
O 0 1 0 2 1 2 

 

 

𝑏𝑖
0 vector is the multiplication of number of atoms 

with inlet mole numbers of the molecule 

𝑏𝐻
0=1*4+10*2+0*2+0*0+0*0+0*0=24 

𝑏𝐶
0=1*1+10*0+0*0+0*1+0*1+0*0=1 

𝑏𝑂
0=0*1+10*1+0*0+0*2+0*1+0*2=10 

In this case initial matrix will be in the form of: 

[
4 2 2
1 0 0
0 1 0

0 0 0
1 1 0
2 1 0

]

{
 
 

 
 
𝑛𝐶𝐻4
𝑛𝐻2𝑂
𝑛𝐻2
𝑛𝐶𝑂2
𝑛𝐶𝑂
𝑛𝑂2 }

 
 

 
 

= {
24
1
10
}⁡⁡⁡⁡⁡⁡(2.30)⁡⁡⁡ 

As it is seen from the example mass balance are 

given us 3 equations, but total number of 

equations(moles) are 6, remaining equations will be 

gibbs equations as described above. All togetger 

they construct a system of non-linear equations to 

solve. The results will be equilibrium balance.  

 

In order to solve system of equations continuity 

method(it is also called homotophy method) is 

used. 

This method is relatively less dependent to initial 

estimation of the system of equation solution, 

therefore a good selection for solving the system of 

non-linear equation. The method details is as 

follows:When a problem of system of nonlinear 

equations of the form F(x)=0 desired to be solved, 

assume that solution set to be found is x*. Consider 

a parametric function  G(,x) in the form of 

G(x) =F(x) + (1- F(x) - F(x(0)) ]   (2.31) 

Where =0 coresponds to initial guess of the 

solution , x(0) ,and where =1 value corresponds 

the actual solution set  x(1)= x*    

It is desired to be found  G(x) = 0 therefore for 

=0 equation becomes 

G(x) =G(x) =  F(x) - F(x(0))  and for =1   

(2.32) 

0=G(x) =  F(x)   (2.33) 

Therefore at x(1)=x* solution set will be obtained. 

If a function  G(x) satisfies the above equation 

can be found,  it will also find us the solution. 

Function G is called a homotopy between the 

function G(0,x) and G(1,x)=F(x). In order to find 

such a function, it is assumed to have a function 

G(x)=0 is existed and partial derivative of this 

function with respect to  and x will also be zero  
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if x’() is isolated form this equation, it becomes: 
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(2.35) 

If G(x) = F(x) + (1- F(x) - F(x(0)) ]  equation 

is substituted into the differential equation 
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Forms a Jacobian matrix. and  
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Differential equation becomes 

  10))0(())((
)(

)(
1' 






 xFxJ

d

dx
x     

(2.38) 

It is possible to solve such a differential equation by 

using initial value problem approaches, solution at 

x(1) will be given us the roots of the system of 

equation. Solutions of initial value problems will be 

given latter chapters in details, but A sixth order 

Runge-Kutta differential equation solution will be 

defined here to solve our homotopy problem. If 

equation 

))(,(
)(





xf

d

dx
     (2.39)is given the 6th 

order Runge-Kutta method to numerically solve this 

differential equation is defined as: 

yi+1 = yi + (1/90)*( 7k1 + 32k3 +12k4+32k5+7k6)h 

k1=f(xi,yi) 

k2=f(xi+0.25h , yi+0.25k1h) 

k3=f(xi+0.25h , yi+0.125k1h+0.125k2h) 

k4=f(xi+0.5h , yi – 0.5k2h+k3h) 

k5=f(xi+0.75h , yi + (3/16)k1h+(9/16)k4h) 

k6=f(xi+h , yi - (3/7)k1h+(2/7)k2h+(12/7)k3h - 

(12/7)k4h+(8/7)k5h)     (2.40) 

 

This equation can be given as Buthcher tableu as: 

90/790/1290/3290/790/1

7/87/127/127/27/3

016/90016/3

0014/14/1

0008/18/1

00004/1

00000

1

4/3

4/2

4/1

4/1

0



   

(2.41) 

In these equations h is finite difference step size. 

Solution starts by using the initial value  , x0(0) 

and adds h into  in each iteration step. The code 

given here uses 6th degree Runge-Kutta method to 

solve homotopy(Continuation problem).  It should 

be note that Homotophy method is less dependent to 

initial value compare to methods such as Newton-

Raphson therefore one possibility is to approach 

solution with a relatively rough estimate with 

homotophy following with a Newton-Raphson type 

of method, which is quite efficient when the 

estimation approaches the correct roots.   

 

3. Computer code development 

In order to calculate termodynamic properties of 

gases Schereiber and Pitzer real gas EoS is 

developed (Gas_SP.java). This equation of state has 

a subclass to calculate specific heat values as 

curvefitting values (Gas_Data.java). Equilibrium 

coefficients are calculated from 

ChemicalRaction_SP class. System of equations are 

set together in if_equilibrium_SP class. Continuatio 

method to solve non-linear system of equation is 

given in class iterative_continuity. And finally 

equilibrium codes are solve in equilibrium_SP class. 

In addition to this set an ideal gas equivalent is also 

prepared for comparison purposes. List of classes 

and their utilisation areas are given as a table below: 

 
Program Utilisation 

Atom Calculation atomic balances, 

atomic properties 

Gas_Data Gas data for approximately 
600 gases 

Gas_SP Schereiber and Pitzer real gas 

EoS 

Gas_PG Perfect Gas EoS 

ChemicalReaction_SP Chemical reaction calculater 
for Gas_SP 

If_equilibrium_SP Defines non-linear system of 

equation for Gas_SP 

Equilibrium_SP Stoichiometric Equilibrium 
calculator for Gas_SP 

ChemicalReaction_PG Chemical reaction calculater 

for Gas_PG 

If_equilibrium_PG Defines non-linear system of 
equation for Gas_PG 

Equilibrium_PG Stoichiometric Equilibrium 

calculator for Gas_SP 

Iterative_continuity Continuation(homotophy) 
method for non-linear system 

of eqns. 

  

Sample solutions: 

One kmol of CO an d one kmol of O2 established an 

equilibrium at 3000 K. The equilibrium reaction for 

this is as follows: 

𝐶𝑂 +
1

2
𝑂2 ⇌ 𝐶𝑂2 

The reaction will be 

𝐶𝑂 + 𝑂2 → 𝑛0𝐶𝑂 + 𝑛1𝑂2 + 𝑛2𝐶𝑂2 

Find the equilibrium composition. System pressure 

is P=101.325 bar. (Pref=101.325 bar) 
 import java.util.*; 
import java.awt.*; 

import java.applet.Applet; 

import java.awt.event.*; 
import javax.swing.*; 

public class equilibrium_SP 

{public double N[][][]; 
 public String s[]; 

 public double result[][]; 

 public double P; 
 public chemicalReaction_SP r[]; 



 public if_equilibrium_SP fe; 
 public equilibrium_SP(String si[],double Ni[][][],double Pi) 

 {   N=Ni; 

     s=si; 
     P=Pi; 

  int n=N.length; 

     r=new chemicalReaction_SP[n];  
     for(int i=0;i<n;i++) 

     {r[i]=new chemicalReaction_SP("reaction:"+i,s,N[i]);} 

 } 
 public double[][] calculate(double Tproduct,double 

Treactant,double P,double n0[],double high[]) 

 {fe=new if_equilibrium_SP(n0,s,r,Treactant,Tproduct,P);  
  int n_eqn=n0.length; 

  double low[]=new double[n_eqn]; 
  int n_iteration=10; 

  iterative_continuity itc=new 

iterative_continuity(n_iteration,low,high);  
  result= itc.findContinuityRK4(fe); 

  return result;  

 } 
 

public static void main(String arg[]) 

  {    
      String s[]={"CO","O2","CO2"}; 

      double N1[][]={{1.0,0.0},{0.5,0.0},{0.0,1.0}}; 

      double N[][][]={N1}; 
      double P=101.325; //kPa 

      equilibrium_SP eq=new equilibrium_SP(s,N,P); 

      double Tproduct=3000;//degree K 
      double Treactant=3000;//degree K 

      //input moles 

      //CO+H2O+N2--> 
      double n0[]={1,1,0}; 

      //output mole first estimates 

      double high[]={1.0,1.0,1.0}; 
      eq.calculate(Tproduct,Treactant,P,n0,high); 

      String s1[]={"x initial guess","x","y=f(x)"}; 

      Text.printT(eq.result,s1,"Newton_continuation"); 
  }  

   

 } 

 

 
  

To compare the results let us also run equlibrium_PG 

for the same conditions: 

 
 

For T=3000 K and P=1.01325 bar, if N2 is added to 

the reaction. Equilibrium reaction is still the same: 

2
2

1
OCO   

2CO  

The reaction will be 

CO+O2+1.88N2n0CO+n1O2+n2CO2+1.88N2 

Find the equilibrium composition. 
public static void main(String arg[]) 

  {    

      String s[]={"CO","O2","CO2","N2"}; 

      double 

N1[][]={{1.0,0.0},{0.5,0.0},{0.0,1.0},{1.88,1.88}}; 

      double N[][][]={N1}; 

      double P=101.325; //kPa 

      equilibrium_SP eq=new equilibrium_SP(s,N,P); 

      double Tproduct=3000;//degree K 

      double Treactant=3000;//degree K 

      //input moles 

      //CO+H2O+N2--> 

      double n0[]={1,1,0,1.88}; 

      //output mole first estimates 

      double high[]={1.0,1.0,1.0,2.0}; 

      eq.calculate(Tproduct,Treactant,P,n0,high); 

      String s1[]={"x initial guess","x","y=f(x)"}; 

      Text.printT(eq.result,s1,"Newton_continuation"); 

  }   

 

 
To compare the results let us also run 

equlibrium_PG for the same conditions: 

 
For T=3000 K and P=1000 kPa, if N2 is added to 

the reaction. Equilibrium reaction is still the same: 

2
2

1
OCO   

2CO    The reaction will be      𝐶𝑂 +

𝑂2 → 𝑛0𝐶𝑂 + 𝑛1𝑂2 + 𝑛2𝐶𝑂2 

 
To compare the results let us also run 

equlibrium_PG for the same conditions: 

 
 



 
 

Example case: 

For T=3000 K and P=101.325 kPa, if N2 is added 

to the reaction. Equilibrium reaction is still the 

same: 

2
2

1
OCO   

2CO   𝑁2 + 1/2𝑂2 ⇌ 2𝑁𝑂  

The reaction will be      𝐶𝑂 + 𝑂2 → 𝑛0𝐶𝑂 +

𝑛1𝑂2 + 𝑛2𝐶𝑂2 + 𝑛3𝑁2 + 𝑛4𝑁𝑂 

Sample program: 
 import java.util.*; 

import java.awt.*; 
import java.applet.Applet; 

import java.util.*; 

import java.awt.*; 
import java.applet.Applet; 

import java.awt.event.*; 

import javax.swing.*; 
public class equilibrium1_SP 

{  public static void main(String arg[]) 

  {    chemicalReaction_SP r[]=new  chemicalReaction_SP[2]; 
      String s[]={"CO","O2","CO2","N2","NO"}; 

      double 

N1[][]={{1.0,0.0},{0.5,0.0},{0,1},{0.0,0.0},{0.0,0.0}}; 
      r[0]=new  chemicalReaction_SP("r0",s,N1); 

      double 

N2[][]={{0.0,0.0},{1.0,0.0},{0.0,0.0},{1.0,0.0},{0.0,2.0}}; 
      r[1]=new  chemicalReaction_SP("r1",s,N2); 

      double Tproduct=3000.0;//degree K 
      double Treactant=3000.0;//degree K 

      double n0[]={1.0,1.0,0.0,1.88,0.0}; 

      double P=101.325;//kPa 
   if_equilibrium_SP fe=new 

if_equilibrium_SP(n0,s,r,Treactant,Tproduct,P);   

   double n[]={0.51,0.52,0.53,0.54,0.55};   
   //double r1[]=fe.func(n);   

   //double [] r1= 

continuity.continuationRK6(fe,n,4); 
   double [] r1= 

continuityi.newton_continuationRK6(fe,n); 

   String 
ss[]={"nCO","nH2O","nCO2","nH2","nO2"}; 

   String ss1="Equilibrium reaction 

CO+"+'\u00BD'+"O2"+'\u21C4'+" CO2 \n"; 
   ss1+="CO+"+"at T="+Tproduct+" K "; 

   fe.equilibrium_print(r1); 

  }} 

 

 

 
 

To compare the results let us also run 

equlibrium1_PG (Perfect gas) for the same 

conditions: 

 

 
 

 

4. Results and conclusion 

Stoichiometric chemical equilibrium algorithm is 

developed by using Schereiber and Pitzer real gas 

EoS. Schereiber and Pitzer EoS is relatively 

unknown equation of states that generalised gas 

relations by using Pitzer coefficients. Equilibrium 

calculations are based on atomic mass balances and 

minimisation of gibbs energy. Stoichimetric 



chemical equilibrium concepts is used in 

calculations, required equilibrum equations are 

defined as an input parameter, and chemical 

equilibrium coefficients are calculated by using only 

temperature dependent components of gibbs energy. 

In order to compare the results, perfect gas base 

calculations are also carried out. The most notable  

 

difference of ideal gas based calculations and real 

gas based calulations are that ideal gas equations are 

based on pressure while real gas equations are based 

on fugacity. Results seems not deviates much, 

therefore one of the conclution is that for 

atmospheric reactions ideal gas approach will be 

sufficient for evaluation of chemical reactions. 

Several example cases runs with both EoS‘. The 

complete codes for this analysis is given in internet 

site www.turhancoban.com as zip fie SCO1.rar. 

Further analysis for direct gibbs free energy 

minimisation without Stoichiometric equations are 

also studied by our group. It will be presenrted as  

sperate papers. 
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6. Nomenclature 

Z Compressibility factor 

P Pressure 

 density 

R Gas constant 

T Temperature 

B,C,D,E,F,G Schereiber-Pitzer EoS constants 

Tr Reduced pressure 

Tc Critical temperature 

A Helmholts energy 

H, h Enthalpy 

G,g  Gibbs free energy 

S,s Entropy 

f Fugacity 

v Specific volume 

Cp Specific heat at constant pressure 

 Chemical potential 

Aij Atom matrix 

 Homotophy(continuity) variable 

n Mole numbers 

M Molecular weight 
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