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ÖZET 

BİR SOĞUTMA ÇEVRİMİNİN AKILLI VE YAPAY ZEKA SİSTEMLERİ 

KULLANAN OPTİMAL KONTROLÜ 

TURGUT, Mert Sinan 

Doktora Tezi, Makine Mühendisliği Anabilim Dalı 

Tez Danışmanı: Doç. Dr. Mustafa Turhan ÇOBAN 

Mart 2019, 98? sayfa 

Bu tezde, soğutma çevrimlerinin enerji verimliliğini arttırıcı yöntemler incelenmiştir. 

İncelenen bu yöntemlerden birisi buhar sıkıştırmalı soğutma çevriminin dinamik simülasyon 

analizi, diğeri ise yapay sinir ağları kullanarak bir buhar sıkıştırmalı soğutma çevriminin 

optimal kontrolüdür.  

Dinamik simülasyon analizinde, bir buhar sıkıştırmalı soğutma çevrimi dinamik olarak 

modellenmiş, soğutucu akışkanlar olarak R134a ve R1234yf kullanılarak bu iki akışkanın 

soğutma performansları karşılaştırılmıştır. 

Yapay sinir ağları destekli optimal kontrol çalışmasında ise, bir buhar sıkıştırmalı 

soğutma çevriminin dinamik modellenmesi gerçekleştirilmiş, ardından simülasyon verileriyle 

bir yapay sinir ağı eğitilmiş ve bu yapay sinir ağını sistem modeli olarak kullanılıp sistemin 

optimal kontrolü gerçekleştirimiştir. 

Anahtar sözcükler: Buhar sıkıştırmalı soğutma çevrimi, dinamik sistem simülasyonu, 

optimal kontrol, yapay sinir ağları. 

 

 

 

 

 

 



ABSTRACT 

OPTIMAL CONTROL OF A REFRIGERATION CYCLE THAT USES 

SMART AND ARTIFICIAL INTELLIGENCE SYSTEMS 

TURGUT, Mert Sinan 

PhD in Mechanical Eng. 

Supervisor: Assoc. Prof. Dr. Mustafa Turhan ÇOBAN 

March 2019, 98? pages 

In this thesis, the methods that improve the energy efficiency of the refrigeration cycles 

have been analyzed. One of these methods is dynamic simulation analysis of a vapor 

compression refrigeration cycle, and the other is optimal control of a vapor compression 

refrigeration cycle with using the artificial neural networks. 

In the dynamic simulation analysis, dynamic modeling of a vapor compression 

refrigeration cycle has been accomplished, thereafter, two refrigerants are employed in the 

cycle seperately, R134a and R1234yf, and their cooling performances are compared with each 

other. 

In the optimal control with using the artificial neural networks study, dynamic modeling 

of a vapor compression refrigeration cycle has been accomplished, afterwards, an artificial 

neural network has been trained with the simulation data and the optimal control of the system 

has been done by utilizing the artificial neural network as the main model of the system.  

Keywords: Vapor compression refrigeration cycle, dynamic system simulation, optimal 

control, artificial neural networks. 
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1. INTRODUCTION 

Nowadays HVAC systems have widespread household and industrial applications and 

play a leading role in the energy consumption of the countries. According to the US 

Department of Energy (DOE), HVAC systems constituted 30% of the yearly total energy 

consumption of commercial buildings in 2017, which is 5.35 quadrillion btu/year (Goetzler et 

al., 2017). Some of the prominent goals of the researchers have been reducing the energy 

consumption the HVAC systems with providing the similar amount of performance and 

minimizing the environmental impacts of the consumed energy. Therefore, the researchers 

have proposed the sustainable energy policies to turn the energy consuming systems such as 

HVAC systems into more managable, efficient and clean systems. The energy hierarchy is 

proposed by the researchers to emphasize the priorities to move towards a more sustainable 

energy policy. The energy hierarchy is depicted in the figure below. 

 

 

Figure 1.1. Energy hierarchy (Renewable Energy World, 2018) 

  

 As can be seen from the Figure 1, energy saving, energy efficiency and renewable 

energy systems are the top priorities of the sustainable energy policy. Energy saving is 

switching off the unnecessary devices or finding solutions to decrease the extra energy 

consumption and lowering the electricity bills. More and more countries are encouraging their 



citizens to save more energy to cut back extra energy consumption. For example, covering 

around the windows with an insulation material may be a sensible solution for reducing the 

heat losses from the buildings. Therefore, people can use less HVAC systems to condition the 

building and energy can be saved.  

 

 Energy efficiency and renewable energy are put forward as the two pillars of the 

sustainable energy policy by the researchers (Prindle et al., 2007). Energy efficiency may 

cause serious cost-effective energy savings and emission reductions. However, renewable 

energy draws the attention of the policymakers and public more compared to energy 

efficiency. Energy efficiency is a key term for slowing the energy supply and carbon emission 

to make clean sources catch up with the ever-growing energy demand. Also, unless the 

renewable energy sources are utilized in large measures, the carbon emission levels are not 

expected to reach favorable levels. Therefore, it can be said that energy efficiency and 

renewable energy are the two pillars of the sustainable energy policy that requires effective 

teamwork together to carry the humanity to a more clean and sustainable environment.    

 

 This thesis deals with the energy efficient analysis, optimization and control of the 

HVAC systems. For this reason, the emphasis will be on energy efficiency of the energy 

systems, especially HVAC systems, from this point forward. The researchers have mainly 

studied on the thermodynamic analysis, optimization and control of the HVAC systems to 

develop more energy-efficient and environmentally-friendly HVAC systems. Analyzing the 

steady-state and dynamical behavior of these systems is an key factor in design and control of 

such systems (Turgut and Coban, 2018). For this reason, the first studies that have found their 

place in the literature were mainly about the steady-state and dynamical behavior of the 

HVAC systems.  

 

  American National Standarts Bureau carried out one of the pioneer studies regarding 

the dynamical behavior of the HVAC systems, particularly refrigeration cycles. In these 

studies the researcher have investigated the steady-state and dynamical behavior of the chiller 

(Chi, 1979) and boiler (Chi, 1976). As a follow-up study, Chi and Didion (1982) developed a 

software model that can dynamically simulate a heat pump called TRPUMP. The researchers 

included the models of the all components to the software in lumped parameter form and 

compared the results of the model with the experiments. Bonne et al. (1980) investigated the 



dynamic simulation of a heat pump that is driven by a electrical motor powered compressor 

and analyzed the system performance with on-off control of the compressor.  MacArthur 

(1984) developed the dynamic model of a vapor-compression refrigeration cycle for the 

accomplishment of a closed-loop control task. The author has modeled the evaporator and the 

condenser by utilizing the finite-difference method and compressor and expansion valve by 

using static relationships. As a result of this study, the author has achieved the dynamic 

simulation, investigated the system stability and compared the results of the model and 

experimental setup. Chen and Lin (1991) analyzed the optimal component design combination 

that minimizes the energy consumption of a small-scaled refrigeration cycle. The authors have 

achieved to reduce the energy consumption of the system by 5.1% with various dynamic 

simulation studies. Fu et al. (2003) studied the dynamic modelling of a dual-mode air-to-water 

heat transfer based heat pump. Studies in dynamic modelling of the refrigeration cycles are 

continuing and more and more papers, such as (Zhu et al., 2013), are finding their place in the 

literature.   

 

 Steady-state analysis of the HVAC systems have also been long studied by the 

researchers. Hepbasli (2005) studied the thermodynamic analysis of a ground-source heat 

pump utilized for district heating. The authors have studied energetic and exergetic analysis of 

a ground-source heat pump that is available in their institute. Bayrakci and Ozgur (2009) 

investigated the energetic and exergetic performance of a vapor compression refrigeration 

system which employs pure hydrocarbon refrigerants. Four unique hydrocarbons and two non-

hydrocarbons are analyzed in the refrigeration cycle, the hydrocarbons are R290, R600, R600a 

and R1270, and the non-hydrocarbons are R22 and R134a. Steady-state thermodynamic 

analysis have been performed for the each refrigerant in the cycle and the authors have found 

out that R1270 resulted in the best performance in terms of COP and second law efficiency. 

Ahamed et al. (2010) studied the steady-state thermodynamic investigation of a vapor 

compression refrigeration cycle that employs R600 and R600a refrigerants. As a result of this 

study, the authors have concluded that exergetic efficiency of the cycle operated with R600a is 

50% higher than that of R134a. The authors have also found out that the cycle showed similar 

performances with R134a, R600 and R600a refrigerants. Arora and Kaushik (2008) 

investigated the theoretical steady-state thermodynamic analysis of a vapor compression 

refrigeration cycle that employs R502, R404a and R507a refrigerants. The authors have 

studied the operation condition ranges of the evaporator and the condenser respectively from -



50°C to 0°C and 40°C to 55°C. As a result of the study, the authors have concluded that the 

cycle gives more favorable performance results when it employs R507, instead of R502 and 

R404a refrigerants. 

 

 Thermodynamic design optimization of the HVAC systems is another significant field of 

study for the energy-efficiency of the HVAC systems and have been studied extensively by the 

researchers. HVAC thermodynamic design optimization problems are naturally nonlinear, 

highly constrained and mixed continuous-discrete. The emerging metaheuristic techniques is 

regarded as a useful alternative to the traditional methods by the researchers. By studying 

exclusively on this topic, the authors have concluded that Evolutionary Algorithm is a more 

effective tool compared to traditional methods, such as direct search methods (Wright and 

Hanby, 1987), and heuristic methods, especially Genetic Algorithm (GA) while tackling with 

HVAC design optimization problems (Wright, 1996; Fong et al., 2009). Fong et al. (2009) 

investigated a centralized HVAC system and studied on minimizing the total energy 

consumption of the system with respect to hourly cooling load profile of a day. The authors 

have modeled the optimization problem with one objective, seven design variables and nine 

design constraints. The Robust Evolutionary Algorithm (REA) has been used to solve the 

optimization problem. The results found by the REA is compared with that of the GA and it is 

found out that REA gives more favorable properties that results in lower total daily energy 

consumption rates.  

 

 Sayyaadi and Nejatolahi (2011) studied the multi-objective optimization of a cooling 

tower assisted vapor compression refrigeration system. The authors have modeled the 

optimization problem in a multi-objective manner. The two objectives are the total cost and 

total irreversibility of the cycle. The authors have utilized the multi-objective Genetic 

Algorithm to solve the problem. The problem is modeled with eight design variables and it has 

been found out that multi-objective optimization results are more favorable thermodynamic 

and economic properties than two single-objective optimization cases. Jain et al. (2016) 

accomplished the multi-objective design optimization of a cascaded absorption-vapor 

compression refrigeration cycle. The considered cycle employs R410a on the vapor 

compression side and LiBr-H2O fluid pair on the absorption side. The authors have modeled 

the optimization problem with seven design variables and the two objective functions are total 

irreversibility and total cost of the cycle. The Non-dominated Sorting Genetic Algorithm II 



(NSGA-II) is utilized for the solution of the multi-objective optimization problem. As a result 

of this study, it has been found out that multi-objective case resulted in more favorable cycle 

thermodynamic and economic properties than that of single-objective cases. 

 

 Control of the HVAC systems is an emerging field and new studies are incorporated into 

the literature. Advancement of the new technologies such as microchips, data storage and 

communication devices have made possible the advanced control methods to become 

applicable to the HVAC systems (Afram and Janabi-Shafiri, 2014). However, traditional 

control methods such as PID and on/off are still applied to the HVAC systems due to their 

simplicity and ease of operation and formulation. A major downfall of the traditional control 

algorithms have been giving inconsistent performances among HVAC systems. Jain and 

Alleyne (2015) accomplished the formulation an exergy-based dynamic model of a vapor 

compression cycle. The authors realized the linearization of the non-linear model around a 

working point and applied the linear model predictive control (MPC) method to the system. 

Comparison of the two different cases have been investigated in this study, namely 

minimization of the total exergy destruction and minimizing the compressor work, thus the 

maximization of the COP of the cycle over time. The authors have concluded by analyzing the 

simulation results that exergy destruction minimization case resulted in 40% more favorable 

exergetic efficiency than the compressor work minimization case.  

 

 Yin et al. (2016) presented a unique cascade control strategy for the vapor compression 

cycles in their study. The presented cascade control strategy is made up of two different loops, 

namely inner and outer loops. The pressure difference between the evaporator and the 

condenser and the superheat temperature are controlled by applying the MPC algorithm to the 

system in the inner loop and a PI controlled is utilized to determine the set point of the 

superheat by considering a non-linear relationship between the cooling demand and superheat 

temperature. By investigating the results, the authors have found out that the presented control 

strategy results in 5.8% improvements of the first law efficiency of the system compared to 

contestant control methods.  

 

 This thesis is about energy-efficient analysis and control of HVAC systems, particularly 

refrigeration cycles. As discussed above, dynamic analysis of the thermodynamic systems is a 

key factor in energy-efficient design and control of such systems. The energy demand of the 



humanity is increasing day by day as the technology advances and world’s population 

increases. For this reason, necessity of more energy-efficient and environmentally-friendly 

HVAC systems are increasing. Control and energy-efficient design of such systems may be a 

solution for the problems described above. The thesis starts with the dynamic analysis of a 

vapor compression refrigeration cycle. All of the components in the cycle is modeled with 

methods used in dynamic analysis. The methods used in dynamic analysis of the heat 

exchangers, such as the evaporator and the condenser, are described and then a case study is 

presented, which includes performance comparison of the refrigeration cycle that employs 

R134a and R1234yf refrigerants. The refrigerant R1234yf is put forward by the researchers as 

an alternative to R134a. R1234yf has more favorable Ozone Depletion Potential (ODP) and 

Global Warming Potential (GWP) values compared to that of R134a. Then the thesis continues 

with the control study of a vapor compression refrigeration cycle. The non-linear model of the 

cycle is developed by utilizing the Moving-Boundary (MB) method and static relations. An 

artificial neural network is trained to predict the behavior of the cycle. And Non-linear Model 

Predictive Control (NMPC) algorithm is implemented to control the system. Each optimization 

problem in the NMPC is solved by applying the Whale Optimization Algorithm (WOA) 

(Mirjalili and Lewis, 2016). The WOA is swarm-based nature-inspired metaheuristic 

algorithm that mimics the hunting behavior of the whales in the environment. The WOA have 

favorable exploration and explotation capabilities and can effectively search large solution 

spaces.  

 

 Some of the novel aspects of this thesis are: 

 The dynamic characteristics of the two contending refrigerants, R134a and R1234yf, 

are investigated.  

 The dynamic modeling of the refrigeration cycles is studied. 

 Neural network-based NMPC is applied to control a vapor compression refrigeration 

cycle.  

 A metaheuristic optimization algorithm, the WOA, is utilized the solve the problems 

arise in the each time step in NMPC. 

 

 

 

 

 



 

2. INTRODUCTION TO HEAT PUMPS AND DYNAMIC ANALYSIS OF A 

VAPOR COMPRESSION SYSTEM 

 2.1. Introduction to Heat Pumps 

 Heat pumps have been in interest of the researchers and scientists for decades. 

Theoretically, the first vapor compression heat pump is proposed in the works and thesis of 

Carnot in the early 19th century (Reay and Macmichael, 1988). This first proposed cycle is 

named after Carnot and is called as the Carnot cycle. Later, William Thomson (Lord Kelvin) 

proposed the first application of the Carnot cycle and called it as ‘heat muliplier’. The heat 

multiplier is the first application that a refigeration machine that can also heat the environment 

if needed. During that time, conventional furnaces did not permit continuous combustion of 

the fuel for heating. Lord Kelvin claimed that his heat pump can contuously condition the 

environment with consuming less fuel compared to conventional furnaces. The diagram 

representation of the heat multiplier is given in Figure 2.1. 

 

 

Figure 2.1. Lord Kelvin’s heat multiplier (Reay and Macmichael, 1988) 

 

 The heat multiplier employed air as the working fluid and mainly consisted of two water 

tanks (Dyakowski and Brodowicz, 1993). The two water tanks took the roles of the high- and 

low-temperature heat sources. The air was processed in the cycle and then released to the 

environment. Later, it is claimed that Lord Kelvin’s heat multiplier is successfully produced in 

Switzerland. The refrigeration system that is built in Switzerland is depicted in Figure 2.2. 



 

 

Figure 2.2. Diagram of the first constructed heat pump (Reay and Macmichael, 1988) 

 

 Twentieth century witnessed rapid development of the heat pumps. One of the first 

conventional vapor compression refrigeration cycle is installed by Southern California Edison 

Co. in Los Angeles in 1930. The cycle had the power of 1050 kW and the Coefficient of 

Performance (COP) of the cycle was 2.5. Likewise, the Zurich Technical University ETH 

installed a heat pump that had 7MW power and 3 COP value in 1942. The use of organic 

fluids as the working fluid of the heat pumps are popularized in 1940s and first household 

commercial heat pump products began to appear at the stores. United States was quick to 

adopt this new technology due to having more suitable climatic conditions and installed many 

modern heat pump products to the buildings. In the first full year production, around 1000 

commercial heat pumps are manufactured. This number is doubled by 1954 and increased 

tenfold by 1957. The majority of the products are installed in southern parts of the United 

States. By the 1980s, 30% of the all newly constructed houses in the United States had a heat 

pump. Afterwards, other countries that have different climatic conditions than the United 

States such as France, Sweden, Norway also adopted the heat pump technology and began to 

install heat pumps to the buildings. Nowadays, the heat pump technology is still widely used in 

many countries and constitutes a large amount of energy consumption of the countries.  

  

 The vapor compression heat pumps convert electrical energy into heat energy. The 

smaller vapor compression heat pumps do not consume much electrical energy and their 

installation are easy. Therefore, they do not constitute much problem. However, larger heat 

pumps requires more electrical energy to operate. And larger electrical-to-heat energy 

conversion results in lower exergetic efficiency. The sorption heat pumps are a great 

alternative to vapor compression heat pumps. The sorption heat pumps do not have a 



compressor that consumes large eletrical energy. Instead, they utilize a pump that operates 

with much lower electical energy. Their capital cost is much lower than their vapor 

compression counterparts in advantageous conditions. They are hazardous to the environment. 

For these reason, more and more countries are installing sorption heat pumps into factories and 

houses. One of the common type of sorption heat pumps are the absorption heat pumps. As 

discussed before, the absorption requires very litte work input to transfer the heat between the 

high- and low- temperature environments and can be operated with renewable energy 

technologies such as solar panels (Herold et al., 2016). Schematic representation of an 

absorption heat pump and a vapor compression heat pump are depicted in Figure 2.3 and 

Figure 2.4, respectively.  

 

 

 

Figure 2.3. An absorption heat pump (Herold et al., 2016) 



 

      

 

Figure 2.4. A vapor compression heat pump (Herold et al., 2016) 

 

 Using a heat pump can be advantageous in some applications. These are, 

 If there is a place to be heated and the temperature of the place is too low compared to 

the environment. 

 If the place to be conditioned needs both heating and cooling depending on the season. 

 If there is a large energy flow in an industrial factory that can be reversed. 

 If the industrial factory that the heat pump will be installed already has a heat 

regeneration system. 

 If the energy is conveyed to a far away distance. So that the capital cost can be 

decreased by utilizing a heat pump. 

 

 There has been arguments among the politicians and the researchers over the years about 

whether the development of the heat pump technology is neccessary or not. People that defend 

the usage of the heat pumps assert the following points. 

 The heat pumps can help humanity to reduce its energy consumption. The economy can 

not expand much further without the reducing of energy consumption. 

 By integrating the heat pump into a energy system, we can modernize and reduce the 



capital investment cost of the system. 

 A heat pump works for both ways. It can be utilized as either for cooling or heating. It 

is a perfect technology for a space to be conditioned depending on the season. 

 A vapor compression heat pump is not hazardous to environment. It can be used in 

houses where there is low environmental pollution and factories where there are high 

environmental pollution. 

 

 The arguments against the usage of heat pumps are as follows. 

 The US and the northern European countries have different climates. Thus, for example 

in countries like Poland, one can not only rely on using only the heat pumps over a year. 

 Same as above, district heating systems in northern European countries are more 

preferable to heat pump systems in terms of energy consumption.  

 Coal-fired heating systems is more preferable to heat pump systems in terms of 

economic cost. 

 Large vapor compression heat pumps that consume megawatts of energy is more 

appropriate for usage in sizable energy districts.   

 Larger heat pumps should be manufactured and designed separately. These heat pumps 

are less traditional and more complex than their smaller counterparts. Thus, more qualified 

workforce and more economic sufficiency are required to employ such systems. 

  Current working fluids that are employed in the heat pumps do not achieve favorable 

performance. 

 As discussed above, heat pumps can be of different kinds. Also, each type of cycle can 

be realized differently. A brief summary of this fact is depicted in Figure 2.5.  

 

 The most basic type of cycle is the ideal cycle, in other words the carnot cycle. The ideal 

cycle can be thought as the reverse type of heat engine. The heat engine extracts heat from the 

high-temperature environment and releases heat to the low-temperature environment. By doing 

so, it outputs work. On the other hand, the heat pump requires work input to operate. By 

supplying the work input to the system, the cycle extracts heat from the high-environment and 

releases the heat to the low-temperature environment. If the circuit direction of the working 

fluid is reversed, the cycle operates reversely. It extracts heat from the low-temperature 

environment and releases to the high-temperature environment. Thermodynamically, this 

process can be depicted as in Figure 2.6.  



 

Figure 2.5. Type of realizations of different kind of heat pumps (Dyakowski and Brodowicz, 

1993) 

 

 The ideal cycle consists of four different processes (Hundy et al., 2016). These for 

processes are expansion, compression, evaporation and condensation. The working fluid goes 

through these processes and returns to its original state after completing the cycle. In the 

expansion and compression processes, entropy of the working fluid remains constant, thus 

these processes are isentropic. Work is supplied to the system during the compression process 



and extracted from the system during the expansion process. And the heat is transferred to the 

system during the evaporation process and extracted from the system during the condensation 

process. By considering these idealizations, the process is accomplished with maximum 

amount of heat transfer and minimum amount of work. Therefore, the maximum efficiency, 

the Carnot cycle efficiency is accomplished. A graphical representation of a ideal cycle and its 

corresponding temperature-entropy diagram is given in Figure 2.7.    

 

 

Figure 2.6. Thermodynamic representation of the heat pumps (Reay and Macmichael, 1988) 

  

 

Figure 2.7. a) Graphical representation of an ideal cycle b)Temperature-entropy diagram of the 

ideal cycle (Hundy et al., 2016) 

 The Carnot cycle efficiency can be calculated with the following formula, 

 𝐶𝑂𝑃 =
𝑇𝐿

𝑇𝐻−𝑇𝐿
+ 1                                 (2.1) 



 The vapor compression refrigeration cycle can be thought as application of the ideal 

Carnot cycle to the real world. The vapor compression cycle is mainly used for refrigeration 

and it has the same components with the ideal Carnot cycle. The working fluid is compressed 

at the compressor and its pressure and enthalpy goes up. Then the fluid releases its heat energy 

to the environment and condensates at the condenser. Afterwards, the working fluid that is in 

the liquid phase is expanded and transforms into liquid-vapor phase at the expansion valve. 

Finally, the liquid-vapor fluid absorbs the heat energy from the secondary fluid and evaporates 

at the evaporator. The graphical representation and the pressure-enthalpy diagram of the 

corresponding cycle are given in Figure 2.8 and Figure 2.9, respectively.  

 

                                  

 

Figure 2.8. Graphical representation of a vapor compression cycle operated with R134a 

(Hundy et al., 2016) 



 

Figure 2.9. Pressure-enthalpy diagram of the vapor compression cycle (Hundy et al., 2016) 

 

 Another type of heat pump is called the absorption refrigeration cycle. A schematic 

representation of an absorption refrigeration cycle is shown in Figure 2.10.  

 

 

Figure 2.10. An absorption refrigeration cycle (Hundy et al., 2016) 

 

 As can be seen in Figure 2.10, difference between the vapor compression cycle and the 

absorption cycle is that the compressor is replaced with a absorper-generator system. The 



refrigerant leaves the evaporator in vapor form and absorbed by an absorbent. The 

concentration of the absorption fluid increases as the fluid passes through the absorber. Then 

the temperature of the fluid increases at the generator and is pumped back to the condenser. 

The solution with low concentration that is left at the generator is expanded and is pumped 

back to the absorber.  

 

 Mainly two different working fluids are used in the absorption cycles. These are the 

ammonia-water and lithium bromide-water solutions. The lithium bromide-water solution is 

appropriate for general chilling applications. However, the ammonia-water solution is 

appropriate for chilling applications that have evaporation temperature below 0°C. The 

absorption refrigeration cycles take much more energy input than the vapor compression 

cycles, however, they do not require much work input. Therefore, they are suitable for 

renewable energy systems. The COP of an absorption cycle can be calculated as follows, 

 𝐶𝑂𝑃 =

1

𝑇𝑎𝑏𝑠
−

1

𝑇𝑔𝑒𝑛
1

𝑇𝑒𝑣𝑎𝑝
−

1

𝑇𝑐𝑜𝑛𝑑

                                                        (2.2) 

 where 𝑇𝑎𝑏𝑠, 𝑇𝑔𝑒𝑛, 𝑇𝑒𝑣𝑎𝑝, 𝑇𝑐𝑜𝑛𝑑 are the absorber, generator, evaporator and condenser 

temperatures, respectively.  

 

 Adsorption refrigeration cycle is another type of heat pump. Adsorption refrigeration 

cycle utilizes materials such as silica gels and zeolites which can adsorb refrigerants up to %30 

of their weight. Choice of the adsorbent and refrigerant combination changes with the 

application. However the most widely used ones are carbon with ammonia and silica gel with 

water. The amount of refrigerant adsorbed depends on system temperature and pressure. A 

schematic representation of an adsorption refrigeration cycle is depicted in Figure 2.11. The 

processes shown in Figure 2.11 can be described as follows. Initially, the system is at low 

pressure and low temperature state (state a). Thereafter, in b, the adsorbent is heated and the 

adsorbed refrigerant is released and moves on the next vessel. This release process increases 

the pressure and the temperature of the system.  Then, in c, the system is cooled back to the 

environment temperature and re-adsorption of the refrigerant and drop in system temperature 

and pressure begin. Finally, in d, the reduced pressure of the system causes the refrigerant in 

the second vessel to absorb heat energy from the environment and refrigeration phenomenon 

happens. 



 

Figure 2.11. Adsorption refrigeration cycle (Hundy et al., 2016) 

 

 Desiccant cooling systems is the last type of heat pump technology that will be described 

in this thesis. A basic desiccant cooling system is shown in Figure 2.12. Desiccant cooling 

system is an open cycle. It consists of two seperate wheels, namely temperature and humdity 

wheels. The desiccant can be re-activated by utilizing solar or waste heat energy. Thus, 

desiccant cooling is an environmentally-friendly technology. The thermal is wheel is generally 

selected as a rotary heat exchanger and recovers the heat energy between the supply air and 

exhaust air. The desiccant wheel works the same way except it also re-activates the desiccant.  

 

 

Figure 2.12. Desiccant cooling system (Hundy et al., 2016) 



 2.2. Dynamic Modeling of a Vapor Compression System 

 As described above, there are four basic components in a standard vapor compression 

cycle. These components are compressor, expansion valve, evaporator and condenser. A 

general demonstration and pressure-enthalpy diagram of a vapor compression cycle that is 

analyzed in this study are given below in Figure 2.13 and Figure 2.14 respectively.  

 

Figure 2.13. A typical demonstration of a vapor compression cycle (Rasmussen and Alleyne, 

2006) 

 

Figure 2.14. Pressure-enthalpy diagram of a vapor compression cycle (Rasmussen and 

Alleyne, 2006) 

 Bendapudi and Braun (2002) and Lebrun and Bourdouxhe (1998) included a large 

literature review on this topic in their studies. As Bendapudi noted in his study, modeling of 

the heat exchangers takes up the bigger work in dynamic simulation of a vapor compression 

cycle. Modeling of the heat exchangers are generally accomplished by utilizing three different 



group of approaches. These are lumped parameter approach, discretization approach and 

moving-boundary approach. Modeling of the compressor and expansion valve are generally 

done with nonlinear static relationships due to their higher evolving dynamics compared to 

that of the heat exchangers. Brief descriptions of the each heat exchanger modeling approaches 

are given in the paragraphs below. 

 

 Lumped parameter models are perhaps the most primitive and simplified of the three 

modeling approaches. Due to its simplicity, most of the time the focus is on a different point 

that heat exchanger dynamics in the papers that utilizes the lumped parameter models. Work of 

the Chi and Didion (1982) may be a good example of lumped parameter modeling of the heat 

exchangers. 

 

 Discretized models are highly-reliable approaches for the modeling of the heat 

exchangers. Nowadays, most commercial software packages use different types of 

discretization approaches for the modeling of the heat exchangers. The most widely-used 

discretization approaches for the modeling of the heat exchangers are finite-difference (FDM) 

and finite-control volume (FCV) methods. In the discretization methods, the heat exchangers 

are divided into homogenous finite-sized control areas or volumes. High-level of discretization 

generally results in more accurate outcomes, however, it requires more computation power to 

calculate the results. Some of the studies in the literature that utilizes the discretization 

approach are MacArthur (1984), Chen and Lin (1991) and Fu et al. (2003). Demonstration of a 

discretized heat exchanger is given in Figure 2.15.   

 

 

Figure 2.15. Discretized heat exchanger model (Korzen and Taler, 2015)  



 

 The MB method attempts to capture the multi-phase dynamics in a heat exchanger at the 

same time benefiting from the simplicity of the lumped parameter method. In the MB method, 

each fluid phase in the heat exchanger is evaluated as a seperate control volume and the 

boundaries that seperate the each control volume represenets the phase transitions of the fluid. 

Physical and thermal properties of the fluid are evaluated as lumped avarages inside each 

region. Many studies in the literature utilized the MB method for the modeling of the heat 

exchanger dynamics (Rasmussen, 2015; Rasmussen and Shenoy, 2008; McKinley and 

Alleyne, 2008; Li and Alleyne, 2010). The studies in the literature proved that MB is a 

preferable alternative to discretized models with less accuracy and less computational load. A 

sample demonstration of a heat exchanger modeled with the MB method is depicted in Figure 

2.16. 

 

Figure 2.16. A heat exchanger modeled with the MB method (Rasmussen and Aleyne, 2006) 

 From this point forward, the dynamic modeling of a vapor compression cycle will be 

presented. R134a and R1234yf refrigerants are employed in the cycle and their performances 

in the cycle will be compared with each other. The evaporator and condenser are modeled with 

the FDM. Following assumptions are made for the modeling of the heat exchangers: 

 The heat exchangers are double pipe heat exchangers with long and horizontal tubes. 

 Axial conduction that occurs in the heat exchangers are neglected.  

 Refrigerant flow in the heat exchangers is considered as one-dimensional flow.  

 Pressure drops, kinetic and potential energy variations and viscous flow frictions that 

occur in the heat exchangers are neglected.  

 

 The evaporator is considered as a cross-flow double pipe heat exchanger. The 



evaporation process that happens in the evaporator is modeled with the Gungor and Winterton 

(1985) correlation. The following equations describe the Gungor and Winterton correlation.  

 𝐵𝑜 =
𝑞

𝜌𝑉ℎ𝑙𝑖𝑞
                                             (2.1) 

 𝑋𝑡𝑡 = (
1−𝑥

𝑥
)
0.9

(
𝜌𝑣

𝜌𝑙𝑖𝑞
)

0.5

(
𝜇𝑙𝑖𝑞

𝜇𝑣
)
0.1

                               (2.2) 

 𝐸 = 1 + 24000𝐵𝑜1.16 + 1.37(1/𝑋𝑡𝑡)
0.86                              (2.3) 

 𝑆 =
1

1+1.15𝑥10−6𝐸2𝑅𝑒1.17
                                            (2.4) 

 ℎ1 = 0.023𝑅𝑒0.8𝑃𝑟0.4𝑘/𝑑                                (2.5) 

 ℎ𝑝𝑜𝑜𝑙 = 55𝑃𝑟
0.12(𝑙𝑜𝑔10𝑃𝑟)

−0.55𝑀−0.5𝑞0.67                              (2.6) 

 ℎ𝑡𝑝 = 𝐸ℎ1 + 𝑆ℎ𝑝𝑜𝑜𝑙                                 (2.7) 

 Gnielinski (1976) is utilized for the modeling of the determination of the Nusselt number 

in single phase turbulent flows, 

 𝑁𝑢 =
(
𝑓

2
)(𝑅𝑒−1000)𝑃𝑟

1+12.7(𝑃𝑟2/3)√𝑓/2
                                                       (2.8) 

 The friction factor for the determination of the Nusselt number is calculated as follows, 

 𝑅𝑒 =
𝜌𝑉𝐷

𝜇
                                   (2.9) 

 
𝑓 =

64

𝑅𝑒
                                                   𝐿𝑎𝑚𝑖𝑛𝑎𝑟

𝑓 = (0.79𝑙𝑛𝑅𝑒 − 1.64)−2                 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒
                                                       (2.10) 

 A sample demonstration of a discretized evaporator is depicted in Figure 2.17 below. 

 

 

Figure 2.17. A discretized evaporator (Chowdhury et al., 2015) 

 

         Behavior of the primary fluid in the evaporator is calculated by solving following set of 



differential equations, 

 
𝜕�̇�𝑣ℎ𝑣

𝜕𝑡
= �̇�𝑒𝑣ℎ𝑙𝑖𝑞 −

𝜕�̇�𝑣ℎ𝑣

𝜕𝑥
𝑑𝑥                                                                         (2.11) 

 
𝜕�̇�𝑙𝑖𝑞ℎ𝑙𝑖𝑞

𝜕𝑡
= ℎ𝑖𝑛𝑝𝑖𝑛𝑑𝑥(𝑇𝑤 − 𝑇𝑟𝑒𝑓) −

𝜕�̇�𝑙𝑖𝑞ℎ𝑙𝑖𝑞

𝜕𝑥
𝑑𝑥 − �̇�𝑒𝑣ℎ𝑙𝑖𝑞                                       (2.12) 

 Behavior of the secondary fluid is modeled with the following equation, 

 𝜌
𝜕ℎ

𝜕𝑡
− 𝜌𝑉

𝜕ℎ

𝜕𝑥
−

ℎ𝑜𝑢𝑡𝑝𝑜𝑢𝑡

𝐴
(𝑇𝑤 − 𝑇𝑙𝑖𝑞) = 0                                       (2.13) 

 Finally wall temperature of the evaporator is calculated with the following equation, 

 𝐶𝜌𝑉𝑜𝑙
𝜕𝑇𝑤

𝜕𝑡
− ℎ𝑖𝑛𝑝𝑖𝑛(𝑇𝑟𝑒𝑓 − 𝑇𝑤) + ℎ𝑜𝑢𝑡𝑝𝑜𝑢𝑡(𝑇𝑤 − 𝑇𝑙𝑖𝑞)                                            (2.14) 

 The condenser is also considered as cross-flow double pipe heat exchanger. The 

condensation process is modeled with the Travis (1971) correlation. The correlation consists of 

following equations,  

         

𝑅𝑒𝑙𝑖𝑞 < 50                  𝐹2 = 0.707𝑃𝑟𝑙𝑖𝑞𝑅𝑒𝑙𝑖𝑞
0.5

50 < 𝑅𝑒𝑙𝑖𝑞 < 1125  𝐹2 = 5𝑃𝑟𝑙𝑖𝑞 + 5𝑙𝑛[1 + 𝑃𝑟𝑙𝑖𝑞(0.0963𝑅𝑒𝑙𝑖𝑞
0.585 − 1)]

𝑅𝑒𝑙𝑖𝑞 > 1125    𝐹2 = 5𝑃𝑟𝑙𝑖𝑞 + 5𝑙𝑛(1 + 𝑃𝑟𝑙𝑖𝑞) + 2.5𝑙𝑛(0.00313𝑅𝑒𝑙𝑖𝑞
0.812)

                         (2.15) 

 𝐹(𝑋𝑡𝑡) = 0.15(𝑋𝑡𝑡
−1 + 2.85𝑋𝑡𝑡

−0.476)                                                                           (2.16) 

 
𝑁𝑢𝐹2

𝑃𝑟𝑙𝑖𝑞𝑅𝑒𝑙𝑖𝑞
= 𝐹(𝑋𝑡𝑡)

1.15                                                                                                 (2.17) 

 Primary fluid behavior in the condenser is modeled with the following set of equations, 

 
𝜕�̇�𝑙𝑖𝑞ℎ𝑙𝑖𝑞

𝜕𝑡
= �̇�𝑐𝑜ℎ𝑙𝑖𝑞 −

𝜕�̇�𝑙𝑖𝑞ℎ𝑙𝑖𝑞

𝜕𝑥
𝑑𝑥                                        (2.18) 

 
𝜕�̇�𝑣ℎ𝑣

𝜕𝑡
= ℎ𝑜𝑢𝑡𝑝𝑜𝑢𝑡𝑑𝑥(𝑇𝑟𝑒𝑓 − 𝑇𝑤) −

𝜕�̇�𝑣ℎ𝑣

𝜕𝑥
𝑑𝑥 − �̇�𝑐𝑜ℎ𝑙𝑖𝑞                                           (2.19) 

 Following equation represents the behavior of the secondary fluid, 

 𝜌
𝜕ℎ

𝜕𝑡
− 𝜌𝑉

𝜕ℎ

𝜕𝑥
−

ℎ𝑜𝑢𝑡𝑝𝑜𝑢𝑡

𝐴
(𝑇𝑤 − 𝑇𝑙𝑖𝑞) = 0                                                                     (2.20) 

 And the wall temperature of the condenser is calculated with, 

 𝐶𝜌𝑉𝑜𝑙
𝜕𝑇𝑤

𝜕𝑡
− ℎ𝑖𝑛𝑝𝑖𝑛(𝑇𝑟𝑒𝑓 − 𝑇𝑤) + ℎ𝑜𝑢𝑡𝑝𝑜𝑢𝑡(𝑇𝑤 − 𝑇𝑙𝑖𝑞)                                           (2.21) 

 Heat transfer phenomena that occurs in the compressor is made up of two different 

processes. First, the fluid coming from the evaporator interacts with the environment until it 

reaches the compression room, then the polytropic compression process takes place in the 

compression room. Design of the compressor is depicted in Figure 2.18. 



 

Figure 2.18. Internal structure of the compressor (McArthur, 1984) 

 First phase of the heat transfer, fluid interacting with the environment, is modeled with 

the following set of equations, 

 𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓(𝑇3 − 𝑇1) = ℎ𝑐𝑜𝑢𝑡(𝑇𝑐𝑦 − 𝑇1) − ℎ𝑠1
(𝑇1 − 𝑇𝑠1

)                                             (2.22) 

 (𝐶𝑐𝑦𝜌𝑐𝑦𝑉𝑐𝑦)
𝑑𝑇𝑐𝑦

𝑑𝑡
= ℎ𝑐𝑖𝑛(𝑇5 − 𝑇𝑐𝑦) − ℎ𝑐𝑜𝑢𝑡(𝑇𝑐𝑦 − 𝑇1)                                              (2.23) 

 (𝐶𝑠ℎ𝑒𝑙𝑙𝜌𝑠ℎ𝑒𝑙𝑙𝑉𝑠ℎ𝑒𝑙𝑙)
𝑑𝑇𝑠1

𝑑𝑡
= ℎ𝑠1

(𝑇2 − 𝑇𝑠1
) − ℎ𝑠1𝑜

(𝑇𝑠1
− 𝑇∞)                                        (2.24) 

 The polytropic compression process is modeled as follows, 

 (
𝑇4

𝑇3
) = (

𝑃𝑐𝑜

𝑃𝑒𝑣
)

𝛾−1

𝛾
                                (2.25) 

 The orifice equation given in James and James (1987) is utilized to model the expansion 

valve. It is assumed that the refrigerant enthalpy does not change between the expansion valve 

inlet and outlet. 

 �̇� = 0.0683𝑥√(𝑃𝑐𝑜 − 𝑃𝑒𝑣)                                                                                         (2.26) 

 Inner structure of an expansion valve is given in Figure 2.19. 

 

Figure 2.19. Inner structure of an expansion valve (Bright Hub Engineering, 2018) 



 

 Thermodynamic and thermophysical properties of the refrigerants R134a and R1234yf 

are acquired from the CoolProp library (Bell et al., 2014). Mass flow rate of the refrigerants 

are considered as 0.2kg/sec. The mass flow rate is applied to the system as step input and 

beginning from the enterance to the evaporator and returning back to the evaporator enterance 

is considered as a time step. Water is employed in the cycle as the secondary fluid and 

thermodynamic and thermophysical properties of the water is acquired from the CoolProp 

library. Isentropic compression rates of the R1234yf and R134a are respectively taken as 1.1 

and 1.2. Heat exchanger walls and the compressor shell are assumed to be made of steel. 

Internal pressures of the evaporator and condenser are calculated as respectively 200kPa and 

796.6kPa given 1.1mm openness of the expansion valve needle.  

 

        Boiling and condensing temperatures of the R134a and R1234yf refrigerants under the 

given pressures are -10°C and 31°C and -13°C and 30.5°C respectively. Refrigerant flow 

inside the heat exchangers are taken as 0.7m/sec which indicates that the flow is turbulent. 

Design properties of the evaporator and condenser are considered as follows, inner and outer 

tube dimeters are 0.01m and 0.018m, respectively and tube lengths are 14m. Initial 

temperature of the compressor cylinder, shell and environment are assumed as 25°C. And 

initial temperatures of the refrigerant, water and wall of the evaporator are taken as -11°C, 0°C 

and 0°C, respectively, and the water and wall temperatures for the condenser as 23°C and 

23°C, respectively. Time steps are considered as 3 sec. and length steps in the heat exchangers 

are taken as 0.1m. The simulations have been done in the Java programming environment and 

the performance results of the cycles that operates R134a and R1234yf are compared. 

Following figures, Figure 2.20, Figure 2.21, Figure 2.22 and Figure 2.23, depict the initial and 

final temperature-entropy and pressure-enthalpy diagrams of the refrigerants R134a and 

R1234yf.  

 



 

Figure 2.20. Initial and final shape of the temperature-entropy diagram for R134a 

 

 

Figure 2.21. Initial and final shape of the pressure-enthalpy diagram for R134a 

 



 

Figure 2.22. Temperature-entropy diagram for R1234yf at initial and final states 

 

 

 

Figure 2.23. Pressure-enthalpy diagram for R1234yf at initial and final states 

 

 

 It can be seen from the Figure 2.20 that initial evaporator, condenser and compressor outlet 



temperatures are respectively -6.17°C, 23°C and 90.07°C and in the final state they become -

8.51°C, 24.47°C and 71.85°C, respectively. Likewise it can be seen from the Figure 2.22 that 

initial evaporator, condenser and compressor outlet temperatures are respectively 5.15°C, 

23.01°C and 84.37°C and in the final state they become -7.45°C, 23.86°C and 70.08°C, 

respectively. The condenser and evaporator wall temperatures varies with time, therefore, 

superheat and subcool temperatures of the refrigerant decreases and increases with time, 

respectively. For this reason, the superheat and subcool temperatures get inside to the 

saturation dome after some time. The system loses its stability and the COP drops to zero after 

these temperatures get inside to saturation dome. Change of the COP, compressor work and 

the cooling load with time for the both refrigerants are depicted in Figure 2.24, Figure 2.25 and 

Figure 2.26, respectively.  

 

 

Figure 2.24. Change of the COP with time for the both refrigerants  

 



 

Figure 2.25. Change of the compressor work with time for the both refrigerants  

 

 

Figure 2.26. Change of the cooling load with time for the both refrigerants  

 

 It can be seen that there are zig-zags in the cooling load trajectory changing with time. These 

zig-zags happens because of the instabilities in the evaporation correlation. Moreover, it can be 



noticed that as the superheat temperature drops, compressor work also drops with time. R134a 

absorbs more heat from the secondary fluid in the evaporator, however, required compressor 

works for the both refrigerants are similar. For this reason, it can be said that performance of 

the cycle that employs R134a is greater than that of employs R1234yf. The reason for this 

phenomena occurs because of the more favorable thermodynamic and thermophysical 

characteristics of the R134a compared to R1234yf. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. OPTIMIZATION  

 3.1. Optimization Problem 

 Engineers generally come across with various type of optimization problems. A common 

task to accomplish in optimization problems is finding a set of design variables which is 

subject to a set of constraints that minimizes or maximizes an objective function. A non-linear, 

single-objective and constrained optimization problem can be mathematically formulated as 

follows (Bozorg-Haddad et al., 2017), 

 

𝑀𝑖𝑛:                 𝑓(𝑥)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:    𝑔𝑗(𝑥) ≤ 0                 𝑗 = 1, 𝑝 

                          ℎ𝑘(𝑥) = 0                𝑘 = 1, 𝑟
                          𝑥𝑖𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖𝑈         𝑖 = 1, 𝑠

                                                                  (3.1) 

where 𝑔𝑗(𝑥), ℎ𝑘(𝑥) are respectively the inequality and equality constraints, 𝑓(𝑥) is the 

objective function and x is the decision variables vector.  

 3.2. Traditional Optimization Techniques 

 There are different types of optimization techniques such as linear programming, 

quadratic programming, trust-region methods, etc. (Yang, 2018). Traditional optimization 

algorithms have some drawbacks compared to modern optimization algorithms. These are, 

 Traditional algorithms are mostly local search algorithms. Therefore they do not 

guarantee to find the global optimum since they only rely on derivative information to find the 

optimum point especially for non-linear problems.  

 Traditional algorithms are generally problem-specific. Since the search space landscape 

changes from problem to problem, it is possible that with changing derivative information, the 

algorithm may not converge to global minimum.  

 Traditional algorithms can not deal with highly non-linear and multimodal problems. 

They also can not deal with discontinuity in the problems. 

 For most of the traditional algorithms, the final solution is tied to the initial point. If a 

traditional algorithm is utilized with the same initial points, it is expected for the algorithm to 

converge to a similar point.  

 As discussed above, the traditional algorithms mostly work on derivative knowledge of 

the search space. For this reason, they can be called as local optimization techniques. These 

algorithms generally have less computational load  compared to their modern counterparts and 

they mostly require little parameter-tuning (Venter, 2010). Following figure can be a good way 

to explain how a traditional gradient-based algorithm works. 

 



    

Figure 3.1. Traditional optimization technique (Vanderpaats, 2007) 

 

 In Figure 3.1, the blindfolded boy represents the searching agent, the flag on top of the 

hill represents the maximum point, or the objective, and the fences are the constraints of the 

problem. A primary objective would be making sure that the boy start from inside of the 

fences since he can not get over the fences blindfoldedly. This stiuation shows the first design 

problem of the traditional optimization techniques. Then the boy takes some steps in the x and 

y directions to approach to top of the hill. By using the information he got from his previous 

steps, he can predict where he can go next until he realizes that he makes no progress. This 

may be reaching a fence or getting a steeper place. If he reaches a fence, this means that the 

algorithm has reached the limits of the workspace, so the boy should go back. If he comes to a 

steeper place, where he would not have any information about where he can go next, this 

means that he reached the top of the hill, optimum point, or he arrived to a small tip, local 

minimum.  

  

 There are many different local optimization techniques in the literature. Some of the 

most famous local optimization techniques are described in the following sub-sections. 

 3.2.1. Newton’s Method 

 Newton’s method is one of the most classic and used traditional optimization technique. 

Newton’s method is based on the Taylor expansion formula defined below, 

 𝑓(𝑥) ≈ 𝑓(𝑥0) + ∇𝑓(𝑥0)𝑇(𝑥 − 𝑥0) +
1

2
(𝑥 − 𝑥0)𝑇𝐻(𝑥0)(𝑥 − 𝑥0)                              (3.2) 

where 𝐻(𝑥) is the hessian matrix. Next step is updating the candidate design vector according 

to the following rule, 



 𝑥 = 𝑥0 − 𝐻(𝑥0)−1∇𝑓(𝑥0)                                                                                            (3.3) 

The step size is assumed to be one in the above equations. One of the major drawbacks of the 

Newton’s method is second derivative term in the Hessian matrix. The second derivative term 

makes the method impractical and hard to calculate for many situations.  

 3.2.2. Gradient Descent Algorithm 

 Gradient Descent (GD) algorithm is also one of the oldest and still widely used 

traditional optimization algorithms (Towards Data Science, 2018). In the GD algorithm, the 

first step is defining the initial point. The candidate desicion variable vector is iteratively 

updated by calculating the gradients towards a steeper position in the search space. The GD 

algorithm can be mathematically represented as follows, 

 𝑥𝑖+1 = 𝑥𝑖 − 𝛾∇𝑓(𝑥𝑖)                                                                                                    (3.4) 

 where γ is the learning rate. A higher learning rate means higher step sizes. However, in 

higher step sizes, the algorithm jumps over and may not converge to the optimum point. This 

phenomenon is depicted in the figure below.  

 

Figure 3.2. Effect of learning rate on the convergence (Towards Data Science, 2018) 

 3.2.3. Nelder-Mead Algorithm 

 The Nelder-Mead (NM) algorithm is also a well-known and widely used traditional 

optimization algorithm. The NM algorithm is simplex-based (Singer and Nelder, 2009). A 

simplex is a convex hull that consists of n+1 vertices where n is the dimension of the 

optimization problem. A sample simplex representation is depicted in the figure below, 

 



 

Figure 3.3. A sample simplex (Singer and Nelder, 2009) 

 

 The simplex is placed on the search space and moves like a ameba until the termionation 

criterion is met. Generally NM algorithm consists of the following steps, 

  Initialize the simplex  

 Repeat the following steps until the termination criterion is met  

  Calculate the fitness value of the simplex vertices 

  If the fitness value does not satisfy the termination criterion transform the simplex 

  Return the fitness value of the best vertex. 

 In the NM algorithm, the simplex have four different transformations. The first one is the 

reflection. Reflection of a simplex is depicted in the following figure with red line represents 

the new form and blue line represents the initial form, 

 

 

Figure 3.4. Reflection of the simplex (Singer and Nelder, 2009) 

 

 Reflection process is mathematically described as follows, 

 𝑥𝑟 = 𝑐 + 𝛽(𝑐 − 𝑥ℎ)                                            (3.5) 

 Second type of transformation is expansion. The expansion process shown in the 

following figure, 



 

Figure 3.5. Expansion of the simplex (Singer and Nelder, 2009) 

 Expansion is mathematically described as follows, 

   𝑥𝑟 = 𝑎 + 𝛽(𝑎 − 𝑥𝑛)                                                                                                   (3.6) 

 The other type of transformation is contraction which is the opposite of extraction and 

mathematically shown as the following equation, 

 𝑥𝑚 = 𝑎 + 𝛽(𝑥𝑛 − 𝑎)                                            (3.7) 

 And the last type of transformation is shrink. As the name suggests, the simplex shrinks 

from one side.  

 3.3. Modern Optimization Techniques 

 Modern optimization techniques have been proposed by the researchers to overcome the 

drawbacks of the traditional algorithms discussed above. Modern optimization techniques can 

be grouped into three classes, heuristics, metaheuristics and evolutionary algorithms. Heuristic 

techniques are mostly based on trial-and-error and random walks. On the other hand, 

metaheuristic and evolutionary techniques utilize memory, learning methods and solution 

history. Advantages of the metaheuristics compared to traditional techniques can be 

summarized as follows, 

 They treat the optimization as black box problems. Thus, they are problem independent.   

 They are gradient-free. Therefore, they are more likely to find the global minimum in 

highly non-linear search spaces.  

 They are mostly designed as global optimizers. 

 They contain stochastic components. Therefore, by utilizing random walks and other 

stochastic techniques, they can explore the search space more effectively. 

   Mainly, an optimization algorithm works as follows. First, a set of decision variables 

are generated by the algorithm. Then, the decision variables are applied to the optimization 

problem and outputs, or state variables, are obtained. Then, the objective function, constraints 

and fitness values are determined in order. Finally, the obtained fitness value is checked if it is 



optimal or not. This procedure is presented Figure 3.6 below. 

  

 The main difference between the metaheuristic and evolutionary algorithms is their 

approach to storing old best values and artificial intelligence techniques that they use.  

 

 

Figure 3.6. Optimization algorithm procedure (Bozorg-Haddad, 2017) 

 Metaheuristic and evolutionary algorithms can be divided into several sub-categories. 

These are nature-inspired and non-nature-inspired algorithms, population-based and non-

population-based algorithms and memory-based and memory-less algorithms. Algorithms such 

as Genetic Algorithm (GA) (Goldberg, 2008), Artificial Bee Colony (ABC) (Karaboga, 2005) 

and Simulated Annealing (SA) (Van Laarhoven and Aarts, 1987) are classified as nature-

inspired algorithms. The GA is derived from the Darwin’s law of evolution while the ABC 

utilizes the food finding behavior of the bees in the nature. On the other hand the algorithms 

like Tabu Search (TS) (Glover, 1989) have no inspiration from nature and their origins are 

unclear.  

 

 Some modern algorithms are based on populations. Each member of the population 

scatter around the search space to find the global minimum. GA and ABC are good examples 

to population-based algorithms. On the other hand, algorithms like SA relies on a single 

searching agent to explore the search space. Finally, there are algorithms that do not use the 

best solution from the previous iteration. They can be classified as memoryless algorithms. 



Any modern optimization technique can be modified as a memoryless or memory-based 

algorithm. Some modern optimization techniques will be presented in the following sub-

sections. 

 3.3.1. Genetic Algorithm 

 The GA is inspired from the behavior of the genetic structures of the living creatures and 

Darwin’s law of evolution. In the nature, fittest member of a society survives and passes its 

own genetic information to the next generation. This phenomenon consists the main idea of the 

GA algorithm.  

 

 The GA is made up of three different processes: crossover, mutation and selection. First, 

an initial set of chromosomes that represents the candidate solutions are created for the 

implementation of the algorithm. Each chromosome consists of genes that represent each 

decision variable. Then, a number of child solutions are generated by exchanging a serie of 

genes with each other and a new solution chromosome is generated. This process is called the 

crossover. Thereafter, the place of the genes in the chromosome can be swapped with each 

other to create a new set of solution chromosome. This process is called the mutation. And 

finally, fitness values of the each chromosome is evaluated. The chromosome with the most 

desirable fitness value is selected and it is stored for the next generation, or iteration, of 

candidate solutions. Generally, the algorithm have two unique parameters to be tuned. The 

crossover operator, the first one, decides how frequent the crossover operation to be carried 

out in a generation. Higher crossover operator values increases the exploration intensification. 

However, a very high crossover operator value may drive away the algorithm from the global 

optimum. The mutation operator, the second one, decides how frequent the mutation operation 

to be carried out in a generation. A high mutation operator value increases the explotation 

intensification. Overview of the GA algorithm is depicted in the following figure, 

 

 



Figure 3.7. General structure of the GA (Venter, 2010) 

  

3.3.2. Differential Evolution 

 Differential Evolution (DE) is parallel direct search method proposed by Storn and Price 

(1997). DE algorithm utilizes the same three processes that GA has, crossover, mutation and 

selection. The DE algorithm employs chromosomes just like the GA to find the global 

optimum. The mutation process is accomplished by the following procedure, 

 𝑣𝑖,𝑔𝑒𝑛+1 = 𝑥𝑎1,𝑔𝑒𝑛 + 𝐹(𝑥𝑎2,𝑔𝑒𝑛 − 𝑥𝑎3,𝑔𝑒𝑛)                                                    (3.8) 

 where a1, a2 and a3 are the random numbers, x is the solution vector, F is the mutation 

factor and v is the differential vector. Then the crossover process is applied depending on the 

value of the crossover factor. The crossover operation is mathematically shown as follows, 

 𝑢𝑗𝑖,𝑔𝑒𝑛+1 = {
𝑣𝑗𝑖,𝑔𝑒𝑛+1          𝑖𝑓 𝑟𝑎𝑛𝑑≤𝐶𝑅𝑂

𝑥𝑗𝑖,𝑔𝑒𝑛+1          𝑖𝑓 𝑟𝑎𝑛𝑑>𝐶𝑅𝑂
                               (3.9) 

 In the last step of the algorithm, the chromosome with the best fitness value is selected 

and its values are stored for the next generation of solutions. 

 

 3.3.3. Particle Swarm Optimization 

 The Particle Swarm Optimization (PSO) is a swarm-based nature-inspired metaheuristic 

algorithm proposed by the Kennedy and Eberhart (1995). PSO algorithm is one of the well-

known and widely used modern optimization techniques. The algorithm has low 

computational load and shares many similarities with the GA such as perturbation at each 

generation and memorization of the best member for the current generation. However, it also 

has some differences. It does not rely on procedures in the GA such as crossover, mutation and 

selection. The algorithm mimics the social life of the animal swarms, such as bird and fish 

flocks. The animals gather together and form swarms and flocks to defend themselves from the 

predators, to hunt preys or to migrate a more fruitful feeding zones in the nature. The PSO 

mathematically models this phenomenon to find the global optimum in the search space.  

 

 There are different types of best locations that are stored for the next generations in the 

PSO. One is the personal best. Each member of the swarm remembers the best location it has 

achieved so far and stores it for the later generations. The other best value is the group best. 

The swarm also watches for the best fitness value it has achieved so far and stores that value 

for later generations. And the last best location is the global best. After all generations has 

been completed, the algorithm compares the last generation swarm best with the global best 



and decides the best solution it has found. The algorithm mathematically described with the 

following formulas, 

 𝑣𝑖
𝑔+1

= 𝑣𝑖
𝑔

+ 𝛾𝑟1(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑔
) + 𝛿𝑟2(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖

𝑔
)                          (3.10) 

 𝑥𝑖
𝑔+1

= 𝑥𝑖
𝑔

+ 𝑣𝑖
𝑔+1

                               (3.11) 

 where r1 and r2 are the randomly generated numbers between 0 and 1, γ and δ are the 

learning parameters usually selected between 0 and 2, x is the solution vector and v is the 

velocity vector that determines the destination of the member. The δ parameter can be 

percieved as how much a member of the swarm trusts itself, on the other hand, the γ parameter 

can be perceived as how much the particle trusts the group. Literature suggests that the both 

learning parameters should be taken as 2. First, the velocity vector is calculated by the 

algorithm, then each particle’s corresponding velocity vector is added to itself. Thereafter, for 

the selection of the best solution, the global best, gbest, is compared with the personal or 

swarm best, pbest, and the solution with more favorable fitness value is selected for the each 

iteration. The position of the each particle plays an important role for the exploration of the 

global optimum.  

 3.3.4. Bat Algorithm  

 The Bat Algorithm (BA) is a nature-inspired swarm-based metaheuristic algorithm 

proposed by Yang (2010). BA is inspired from the echolocation behavior of the microbats in 

the nature. In the BA algorihm, it is assumed that each bat in the swarm knows its exact 

position and there are no barriers that blocks their communication with each other. BA also 

employs the wave characteristics of the bats such as amplitude, loudness and frequency. 

Movement of a bat in the algorithm is modeled with the following equations, 

 𝑓𝑎 = 𝑓𝑚𝑖𝑛(𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛿                                            (3.12) 

 𝑣𝑎
𝑔

= 𝑣𝑎
𝑔−1

+ (𝑥𝑎
𝑔

− 𝑥∗)𝑓𝑎                              (3.13) 

 𝑥𝑎
𝑔

= 𝑥𝑎
𝑔−1

+ 𝑣𝑎
𝑔

                               (3.14) 

 where f is the frequency of the wavelength, δ is a vector consists of randomly generated 

numbers between 0 and 1, x is the location of the bats, v is the velocity of the bats and 𝑥∗ is the 

best global solution of the swarm so far. And the balance between the exploration and 

explotation is provided with the loudness and pulse emission of the wave that bats use to 

communicate. These parameters are calculated as follows, 

 𝐴𝑎
𝑔+1

= 𝜌𝐴𝑎
𝑔

 , 𝑟𝑎
𝑔+1

= 𝑟𝑎
0[1 − 𝑒𝑥𝑝(−𝜏𝑡)]                                      (3.15) 

 where A is the loudness, r is the pulse emission and ρ and τ are the constants. Pseudo 

code of the bat algorithm is defined in the following figure.  



 

Figure 3.8. Pseudo code of the BA (Yang, 2010) 

 3.3.5. Firefly Algorithm     

 The Firefly Algorithm (FA) is another swarm-based nature-inspired metaheuristic 

algorithm proposed by Yang (2010). The algorithm is based on flashing characteristics of the 

fireflies in the nature. Following idealizations have been made to make the algorithm feasible 

for implentation in a computer program,  

 All fireflies are assumed to be unisex. Therefore, each member of the swarm can attract 

each other.   

 Attractiveness of a firefly is propotional to its brightness. Therefore, among two 

fireflies, the brighter one will attract the other one. 

 The brightness of the butterfly is determined by the position of the firefly in the search 

space.  

 The light intensity of the fireflies is calculated as follows, 

 𝐼 = 𝐼0𝑒
−𝜎𝑟                                (3.16) 

 where σ is the light absorption parameter and r is the distance between the fireflies. 

Afterwards, attractiveness of a firefly, α, can be determined depending on the light intensity,  

 𝛼 = 𝛼0𝑒
−𝜎𝑟2

                                (3.17) 

 where α0 is the attractiveness where the two fireflies are at the same location. Finally, 

movements of the fireflies is formulated as follows, 

  𝑥𝑎 = 𝑥𝑎 + 𝛼0𝑒
−𝜎𝑟𝑎𝑏

2
(𝑥𝑏 − 𝑥𝑎) + 𝜏𝜖𝑎                                        (3.18) 

 where x is the position of the each firefly, σ and τ are the tuning parameters and 𝜖𝑎 is the 

vector of randomly generated numbers. Pseudo code of the algorithm is given in the figure 



below, 

 

Figure 3.9. Pseudo code of the FA (Yang, 2010) 

 3.3.6. Cuckoo Search  

 The Cuckoo Search (CS) algorithm is a nature-inspired swarm-based metaheuristic 

algorithm proposed by Yang and Deb (2010). CS algorithm is inspired from the nesting 

behavior of the cuckoos. Some idealizations have been made to make the algorithm feasible 

for implentation. These are, 

 Each cuckoo in the swarm lays one egg at a time and discards it in a randomly chosen 

nest.   

 The egg with the best quality (solution) is carried over to the next generation. 

 The number of host nests are constant.  

 Flight behavior of many animals and insects depict the characteristics of Levy flights. 

Therefore, Levy flights is utilized in the CS. New solutions in the CS algorithm is generated 

with the following equation, 

  𝑥𝑎
𝑔+1

= 𝑥𝑎
𝑔

+ 𝛽 ⊕ 𝐿𝑒𝑣𝑦(𝛼)                                         (3.19) 

 where β is the step size. Levy flights are essentially a random walk method which can be 

calculated as, 

 𝐿𝑒𝑣𝑦~𝑢 = 𝑡−𝛼                                (3.20) 

 Pseudo code of the CS algorithm is given in the following figure. 

 



 

Figure 3.10. Pseudo code of the CS algorithm (Yang, 2010) 

 3.3.7. Artificial Bee Colony Algorithm 

 Artificial Bee Colony (ABC) algorithm is another widely-used nature-inspired swarm-

based metaheuristic algorithm proposed by Karaboga (2005). The algorithm mimics the food 

source searching behavior of a bee swarm in the nature. There are three different types of bees 

in the swarm in the ABC algorithm. They are, the employed bees which are associated with 

the food sources, the onlooker bees which observes the dance of the employed bees and 

choose a food source and the scout bees which search for food sources randomly (Karaboga, 

2010). In the initial phase of the algorithm, scout bees randomly searches around to locate food 

sources. Then the onlooker and employed bees draws food from these sources until they 

become exhausted. Thereafter, the exhausted employed bees becomes scout bees and search 

for new potential food sources. Initialization of the ABC is accomplished with the following 

formula, 

 𝑥𝑎 = 𝑙𝑜𝑤𝑒𝑟𝑎 + 𝛼(𝑢𝑝𝑝𝑒𝑟𝑎 − 𝑙𝑜𝑤𝑒𝑟𝑎)                             (3.21) 

 where lower and upper are respectively the minimum and maximum values that the 

decision variables can take and α is a random variable between 0 and 1. Thereafter, the 

employed bees start to search for new food sources. This phenomenon is modeled with the 

following equation, 

 𝑣𝑎 = 𝑥𝑎 + 𝛽𝑎(𝑥𝑎 − 𝑥𝑏)                              (3.22) 



 where xb is a randomly selected food source and βa is a randomly generated random that 

is drawn from a Gaussian distrubition. Then, probability value of an onlooker bee selecting of 

a food source is calculated as follows, 

 𝑝𝑚 =
𝑓𝑖𝑡(𝑥)

∑ 𝑓𝑖𝑡(𝑥)𝑚
𝑎=1

                                (3.23)

 where fit is the fitness value of the each member of the bee swarm. Finally, scout bee 

phase starts and scout bees search for new food sources in substitution for the abandoned 

sources. General order of the execution phases of the ABC algorithm can be listed as follows, 

 Initialization phase 

 Repeat the following states until the termination criterion is met 

 Execute the employed bees phase  

 Execute the onlooker bees phase 

 Execute the scout bees phase 

 

 3.3.8. Whale Optimization Algorithm 

 The Whale Optimization Algorithm (WOA) is a new nature-inspired swarm-based 

metaheuristic algorithm proposed by Mirjalili and Lewis (2016). The WOA is inspired from 

hunting and foraging behavior of the humpback whales in the nature. It has been observed that 

humpback whales group up and form a spiral of bubbles through the surface of the water 

before to communicate before hunting. This behavior of the humpback whales is modeled in 

the WOA with following steps, encircling prey, spiral bubble-net feeding maneuver and search 

prey.  

 

 In the encircling prey step, the whales do not know the position of the prey initially. The 

algorithm initially assumes that the optimum solution is the target prey. However, the 

candidate optimum solution is later updated with the whale, member, with the best solution 

and all other whales move towards to the best solution. This behavior is mathematically 

modeled as follows, 

 �⃗� = |�⃗��⃗�∗(𝑏) − �⃗�(𝑏)|                                           (3.24) 

 �⃗�(𝑏 + 1) = �⃗�∗(𝑏) − �⃗⃗��⃗�                              (3.25) 

 where b is the iteration number, �⃗� is the position vector of the swarm, 𝑋∗
⃗⃗⃗⃗⃗ is the position 

vector of the best solution and �⃗⃗� and �⃗� are the coefficient vectors. �⃗⃗� and �⃗� are calculated as 

follows, 



 �⃗⃗� = 2�⃗⃗⃗��⃗⃗� − �⃗⃗⃗�                                (3.26) 

 �⃗� = 2�⃗⃗�                                 (3.27) 

 where �⃗⃗⃗� is a vector that its value drops from 2 to 0 over the course of iterations, and �⃗⃗� is 

a random vector between 0 and 1.  

 

 The spiral bubble-net feeding maneuver consists of two phases. First is the shrinking 

encircling mechanism. This behavior represents the value of �⃗⃗� decreasing over the iterations. 

As the value of the �⃗⃗� decreases, the circle becomes smaller and smaller, thus, the algorithm 

converges to a optimal point. The second one is the spiral position updating. The whales 

update their position according to the position of the prey with the following equation, 

 �⃗�(𝑏 + 1) = 𝐺′⃗⃗⃗⃗ 𝑒ℎ𝑘 cos(2𝜋𝑘) + 𝑋∗⃗⃗ ⃗⃗⃗(𝑏 + 1)                            (3.28) 

 where 𝐺′⃗⃗⃗⃗⃗ is the distance between the member and the best solution achieved so far and h 

is a constant parameter that decides the shape of the spiral and k is a randomly gerated number 

between 0 and 1. It is assumed in the algorithm that whales approach to the prey with 0.5 

probability by utilizing the Eq. (3.25) and 0.5 by utilizing the Eq. (3.28). 

  

 The last phase, searching the prey, models the looking for new food sources behavior of 

the whales. The mathematical model of this phase is as follows, 

 �⃗� = |�⃗��⃗�𝑟𝑎𝑛𝑑 − �⃗�|                                          (3.29) 

 �⃗�(𝑏 + 1) = �⃗�𝑟𝑎𝑛𝑑 − �⃗⃗��⃗�                              (3.30) 

 where �⃗�𝑟𝑎𝑛𝑑 is a vector of randomly generated numbers. More details about the WOA 

can be found in Mirjalili and Lewis (2016).  

   

 

 

 

 

 

 

 

 

 



4. ARTIFICIAL NEURAL NETWORKS 

 4.1. Basics of the Artificial Neural Networks 

 Artificial Neural Networks (ANN) is a graph-based artificial intelligence algorithm that 

takes the inspiration from the neural networks in the brains of the living beings (Aggrawal, 

2018). All living beings in the world have cells in their brains which are called neurons. Each 

neuron in the brain is connected with each other axons and dendrites. The connecting region 

between the dendrites are called synapses. A stronger synaptic connection means better the 

new information is learned. This phenomenon constitutes the core of the artificial neural 

network algorithm. A demonstration of a brain cell and an artificial neural network graph is 

presented in the following figure. 

 

 

Figure 4.1. A biological and an artificial neural network (Aggrawal, 2018) 

 

 As can be seen in the Figure 4.1., the synaptic connection between the neurons are 

symbolized with the arrows with each of them having weight values that represent their 

connection strength. And the neuron is symbolized with an elliptic circle. In the ANNs, an 

information is fed to the network with the input neurons, then the information passes through 

the synapses and processed in the neurons. At last, the processed information is gathered from 

the output neurons. Weights of the synapses during the information processing are updated at 

the each iteration. This process provides the learning mechanism in the network. Accuracy of 

the output prediction can be improved by feeding more and more information to the network 

with large amount of iterations.  

 

 Graph-based representation of a single neuron in an ANN is depicted in the following 

figure. 

 



 

Figure 4.2. Structure of a single neuron in an ANN (Haykin, 2009) 

 

 An ANN is made up of three different components. The first one is synapses. Each 

synapse has its own weight. A signal, xj, arrives to a synapse through an input neuron. Then 

the signal is multiplied with the weight, wkj, and goes through the neuron. Thereafter, the 

second component comes into play, that is the adder. Each multiplied weight and signal 

combination and the bias of the neuron is added in the adder component of the neuron. And 

finally, the third component, the activation function, takes the added value and limits for a 

finite range. This processes summarize the mathematical behavior of a neuron in an ANN. 

Mathematically the above mentioned processes can be shown with the following equations, 

 𝑢𝑘 = ∑ 𝑤𝑘𝑎𝑥𝑎
𝑚
𝑎=1                                  (4.1) 

 𝑦𝑘 = 𝜑(𝑢𝑘 + 𝑏𝑘)                                 (4.2) 

 where x is the input signal, w is the synaptic weight and 𝜑(. ) is the activation function. 

Formulas and graphical demonstration of the some of the most used activation functions are 

given below. 

 Identity: 𝑓(𝑥) = 𝑥 

 Sign: 𝑓(𝑥) = {
0                 𝑥 < 0
1                 𝑥 ≥ 0

  

 Sigmoid: 𝑓(𝑥) =
1

1+𝑒−𝑥 

 Tanh: 𝑓(𝑥) =
(𝑒𝑥−𝑒−𝑥)

(𝑒𝑥+𝑒−𝑥)
 

 ReLU: 𝑓(𝑥) = {
0                 𝑥 < 0
𝑥                 𝑥 ≥ 0

  



 

Figure 4.3. Activation Function (Aggarwal, 2018) 

 

 Recently ReLU and tanh activation functions are taking place of sigmoid activation 

function due to ease of training of the ANN. Loss function is another fundamental aspect of an 

ANN. Different loss functions can come up with different results depending on the type of 

learning. For example, log-loss function is used for mostly classification purposes and mean 

square error loss function is mostly used for numerical regression problems. Some of the 

mostly used loss functions in the literature are given with mathematical formulations below. 

  Mean squared error: 𝐿 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1  

 Mean absolute error: 𝐿 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|

𝑛
𝑖=1  

 Mean absolute percentage error: 𝐿 =
1

𝑛
∑ |

𝑦𝑖−�̂�𝑖

𝑦𝑖
| 100𝑛

𝑖=1  

 L2: 𝐿 = ∑ (𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1  

 L1: 𝐿 = ∑ |𝑦𝑖 − �̂�𝑖|
𝑛
𝑖=1  

 Mean squared logarithmic error: 𝐿 =
1

𝑛
∑ |log(𝑦𝑖 + 1) − log(�̂�𝑖 + 1)|𝑛

𝑖=1  

 Negative logarithmic likelihood: 𝐿 = −
1

𝑛
∑ log(�̂�𝑖)

𝑛
𝑖=1  

 A group of neuron that are at the same level of processing forms a layer. The layers 

constitute the backbone of an ANN (Silva et al., 2017). There are three different types of 

layers in ANN. Those are the input layer, the hidden layer and the output layer. The input layer 

receives the external data from the environment and propagates the data through the entire 



network. Generally the data is fed to the input layer with normalized form. Normalization 

makes the regression easier if the there are huge variations among the input data. The second 

class of layers is the hidden layer. The hidden layer neurons do the largest amount of work in 

the network. They extract the patterns from the data and analyze it. The third type of layer is 

the output layer. The neurons in the output layer is responsible for final processing of the data 

and presenting the results.  

 

 Based on the types of neuron interconnectedness and order of the layers, the ANNs are 

classified into four main groups. These are single-layer feedforward networks, multiple-layer 

feedforward networks, recurrent networks and mesh networks. Single-layer feedforward 

network consists of only an output layer. The output layer is the input layer at the same time. 

This type of neural networks are mainly used in linear regression and classification problems. 

A sample presentation of a single-layer network is given in the figure below. 

 

 

Figure 4.4. Representation of a single-layer network (Silva et al., 2017) 

  

 The multi-layer feedforward networks are more popular and useful type of networks. 

They consists of an input layer, one or more hidden layers and an output layer. These type of 

networks have gained popularity in robotics, pattern recognition, system identification, control 

and non-linear regression research fields. The most used type of multi-layer feedforward 

networks are Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) networks. As 

mentioned above, the number of hidden layers can be more than one. However, this variation 

can affect the learning capability and convergence of the network. This issue will be described 

in more detail in the upcoming sub-sections. Representation of a multi-layer feedforward 



network is depicted in the following figure. 

 

 

Figure 4.5. Representation of a multi-layer feedforward network (Silva et al., 2017) 

 

 The recurrent networks are widely-used in areas that utilize time-variant systems such as 

dynamic system identification, process control and robotics. In the recurrent networks, the 

output neurons are connected to the input neurons with a feedback connection. Jordan, Elman 

and Hopfield networks are popular type of recurrent neural network architectures. Also, a type 

of recurrent neural network called NARX network is utilized for the system identification part 

of this paper. More details about the NARX network architecture and training procedure will 

be given in the following sub-sections. The following figure demonstrates a recurrent neural 

network.  

 

Figure 4.6. A recurrent neural network (Silva et al., 2017) 



 

 The mesh networks are generally designed by spatially placing neurons to extract 

patterns from the data. These type of networks are used in pattern recognition, optimization 

and graphs. The Kohonen network is one of the most popular mesh network architecture. 

Graphical representation of a mesh network is given in the following figure. 

 

 

Figure 4.7. A mesh network (Silva et al., 2017) 

 

 The neural networks can be trained in different manners. They can either be trained 

online or off-line. The off-line training is also called the batch training. In the off-line training, 

all of the dataset are provided to the neural network at once. The numerical adjustments of the 

weights are made after all the data is provided to the network. For this reason, at least one 

iteration is needed to accomplish the learning procedure in off-line training tasks. In the online 

training, update of the weights are made after each piece of training data is provided. Each 

training sample can be disregarded after they are presented to the network. Training of the 

ANN in an online manner should be made more carefully. Because the new training data can 

disrupt the behavior of the network and make the previous data reduntant.  

 

 A neural network can be trained with three different learning algorithms. These are 

supervised learning, unsupervised learning and reinforcement learning. The supervised 

learning procedure can be thought as learning with a teacher. The neural network has no 

information about the environment initially and the teacher has knowledge about the 



environment. The environment information of the teacher can be thought as optimum input 

and output data combinations. The following sums up the supervised learning procedure. 

 

 

Figure 4.8. Supervised learning procedure (Haykin, 2009) 

 

 It can be seen from the Figure 4.8 that the environment provides data to both the teacher 

and the system. The teacher completely knows the environment and provides the 

corresponding data for the input to the system. The difference between the desired response 

and the actual response is fed back to the system as the error signal. And the weight 

adjustments have been performed with the error signal. In other words, the learning process 

can be interpreted as the system ‘emulates’ the teacher.  

 

 The other two methods do not contain a teacher to assist the learning process. In the 

supervised learning, the environmental data is directly presented to the system without the help 

of a teacher. Therefore, the network needs to figure out the patterns in the data. This method 

may sound not practical, however, by presenting the network the number of clusters or any 

other properties, learning can be accomplished. The reinforcement learning presents an 

additional critic component compared to the supervised learning. In the reinforcement 

learning, the system ‘learns’ the environment by continually interacting with it. The proper 

input-output combination is produced through minimizing a performance index. The 

reinforcement learning procedure is depicted in the following figure.  

 



 

Figure 4.9 Reinforcement learning (Haykin, 2009) 

 

 As can be seen from Figure 4.9, the critic converts the primary reinforcement signal into 

heuristic reinforcement signal and provides the information to the learning system. The main 

object of the reinforcement learning is minimizing the cost-to-go function. The minimized 

cost-to-go function results in optimal actions combination to reach the objective. 

 

 4.2 Training of an Artificial Neural Network 

 A basic part of an ANN is the perceptron. Each neuron that consists of an adder and the 

activation function is called a perceptron. The most basic type of ANN is called the ADALINE 

network. ADALINE network consists of only one perceptron in one layer and mostly used in 

pattern recognition applications. Practicing with an ADALINE network is a good way to  start 

to understand the fundamentals of training an ANN. Presentation of an ADALINE network is 

depicted in the following figure. 

  

 

Figure 4.10 ADALINE network (Silva et al., 2017) 



 

 The ADALINE perceptron adds all the weight-input multiplications and adds the bias. 

Then, the result is passed through an activation function and the output of the network is 

produced. This process is mathematically expressed as follows, 

  𝑢 = ∑ 𝑥𝑎
𝑛
𝑎=1 𝑤𝑎 − 𝜃                                             (4.3) 

  𝑦 = 𝑔(𝑢)                                  (4.4) 

 where x is the input data, w is the weight, θ is the bias and g(.) is the activation function. 

Knowledge of the error signal is needed for training the network and adjusting the weights. 

The error signal can be mathematically formulated in a supervised learning manner as follows, 

  𝑒 = 𝑑 − 𝑦                                  (4.5) 

 where e is the error signal and d is the desired output. d can be thought as the output 

knowledge that the teacher provides in the supervised learning problems. Since the ADALINE 

network is generally used for linear regression problems, the activation function is generally 

selected as step or bipolar step function. Furthermore, the weights and biases can be updated 

by applying the following equations, 

 𝑤𝑎
𝑐 = 𝑤𝑎

𝑝 + 𝛿(𝑑 − 𝑦)𝑥𝑎                                           (4.6) 

 𝜃𝑎
𝑐 = 𝜃𝑎

𝑝 + 𝛿(𝑑 − 𝑦)(−1)                                (4.7) 

 where the c superscript means the current value, p superscript means the previous value 

and δ is the learning rate. The learning rate must be chosen very carefully. For higher values of 

the learning rate, the algorithm may jump over the global optimum and converge to a local 

minimum. On the other hand, for lower values of the learning rate, the algorithm may 

converge to global optimum very slowly, thus may require too many iterations to converge. At 

each iteration, the weights and the bias must be updated in order to make the error signal equal 

to zero. The ADALINE network or perceptron training algorithm can be summarized as the 

following figure.  

 



 

Figure 4.11 The ADALINE training algorithm (Silva et al., 2017) 

 The next step of the learning phenomenon of an ANN is the backpropogation algorithm. 

The backpropogation algorithm is used mainly for teaching a dataset to a multi-layer ANN. 

The process of backpropogation algorithm starts with initializing the values of the weight and 

biases (Rojas, 1996). Suppose that there is a training set {(𝑥1, 𝑡1), … , (𝑥𝑚, 𝑡𝑚)} which consists 

of spesific patterns of inputs and outputs. And the activation functions of the neurons are 

differentable and continuous. Assume that the output of the ANN is oi. Then, the main 

function to be minimized can be formulated in least mean squares terms as, 

 𝐸 =
1

2
∑ ‖𝑜𝑖 − 𝑡𝑖‖

2𝑚
𝑖=1                                             (4.8) 

 The minimized form of the above function is propogated back to the network and the 

weights and biases are adjusted accordingly to minimize the error for a given dataset. The 

network should distinguish a new data from the learned dataset. 

  



 

Figure 4.12 Propogating the error (Rojas, 1996) 

 

 For each ti, there is an Ei is calculated. Each of the objective function is added up and a 

total error E is formed. The error is mathematically formulated as follows, 

 𝐸 = 𝐸1 + 𝐸2 + ⋯+ 𝐸𝑚                                                      (4.9) 

 Main objective in training an ANN is adjusting the weights and biases to make the E as 

low as possible. The only way to adjust the weights in the network is calculating the gradients 

of E for each weight and backpropogating the derivatives. Mathematical representation of the 

gradients is as follows, 

  ∇𝐸 = (
𝛿𝐸

𝛿𝑤1
,

𝛿𝐸

𝛿𝑤2
,

𝛿𝐸

𝛿𝑤3
, … ,

𝛿𝐸

𝛿𝑤𝑚
)                              (4.10) 

 Adjustment of the each weight and bias at each iteration is calculated with the following 

equations, 

 ∆𝑤𝑚 = −𝜇
𝛿𝐸

𝛿𝑤𝑚
                                           (4.11) 

 ∆𝜃𝑚 = −𝜇
𝛿𝐸

𝛿𝜃𝑚
                                           (4.12) 

 where µ is the learning rate and the reason it is negative because the optimum point is 

always in the negative direction of the gradient. Once the numerical values of the gradients are 

calculated, the weight and bias value combinations that make the error gradient zero can be 

obtainable.   

 

 The backpropagation algorithm consists of two basic steps. These are the feed-forward 

and the backpropagation phases. In the feedforward case, the input is fed to the network and 

propagated through the output. The derivatives of the functions are also computed in this 

phase. In the backpropagation step, the network is employed through backwards. The error in 



the output node is propagated through the input nodes by taking into account of the derivatives 

of the activation functions. For example, if we focus on one of the weights, assume that wab. 

And let’s assume that the result of one of the output nodes is oa. The first derivative at the 

output node is computed as follows, 

 
𝛿𝐸

𝛿𝑤𝑎𝑏
= 𝑜𝑎

𝛿𝐸

𝛿𝑜𝑎𝑤𝑎𝑏
                               (4.13) 

 If we consider the backpropagated error at the b-th node as δb then the derivative to be 

backpropagated in that node is, 

 
𝛿𝐸

𝛿𝑤𝑎𝑏
= 𝑜𝑎𝛿𝑏                                (4.14) 

 And the weight update values can be calculated as follows, 

 ∆𝑤𝑎𝑏 = −𝜇𝑜𝑎𝛿𝑏                               (4.15) 

 At each iteration the weights and biases will adjust themselves and lead to better 

predictions. The above mentioned mathematical case of backpropagation can be summarized 

as the following figure where the left side of the j-th output unit is the derivative of the 

activation function.  

 

Figure 4.13 Backpropagation in a chain of nodes (Rojas, 1996)  

 

 4.3. Nonlinear Autoregressive Exogenous (NARX) Network 

 NARX is a type of recurrent neural network. It is a generalization of autoregressive 

equations (Boussaada et al., 2018). NARX is an effective tool for non-linear time-series 

identification, particularly dynamic systems. NARX network is also used in this thesis for the 

identification of the non-linear system. In order to correctly predict the next time output, the 

current time input and output is fed to the network with the previous time input and output. 

The following figure summarizes the two different architectures of the NARX network. 

 



 

Figure 4.14 Different architectures of the NARX network (Boussaada et al., 2018) 

 

 In the parallel architecture, the next time output is calculated from the current time input 

and previous time output predictions. In the series-parallel architecture, the next time output is 

predicted by the current time and previous time input and outputs. The series-parallel 

architecture is more favorable compared to the parallel architecture because of its ability to 

converge much faster and it can be trained by in feedforward backpropagation manner. For 

this reason, the series-parallel architecture is used in this thesis for the identification of the 

system. Finally the mathematical representations of the series-parallel and parallel 

architectures are respectively given in the following equations, 

 �̂�(𝑡 + 1) = 𝑓 (
𝑦(𝑡), 𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑏),

𝑥(𝑡 + 1), 𝑥(𝑡), 𝑥(𝑡 − 1), … , 𝑥(𝑡 − 𝑛𝑎)
)                          (4.16) 

 �̂�(𝑡 + 1) = 𝑓 (
�̂�(𝑡), �̂�(𝑡 − 1), … , �̂�(𝑡 − 𝑛𝑏),

𝑥(𝑡 + 1), 𝑥(𝑡), 𝑥(𝑡 − 1), … , 𝑥(𝑡 − 𝑛𝑎)
)                          (4.17) 

 where �̂� is the predicted output, y is the output, x is the input, f(.) is the neural network 

function and nb and na are the output and input delays, respectively.  

  

 

 

 

 

 

 

 

 



5. MODEL PREDICTIVE CONTROL 

 5.1. Introduction to Model Predictive Control 

 Model Predictive Control (MPC) algorithms were improved from the optimal control 

theory first developed in 1950s. By the end of 1970s first MPC algorithms began to find their 

place in the literature (Findelsen et al., 2007). The chemical industry quickly adopted the MPC 

due to its simplicitiy, effectivity and requirement of only a step input identification of the 

system which leads to easier models of the system.  

 

 MPC is assumed as a developed method for controlling the systems that are linear and 

have slow dynamics. Other systems, such that the ones have nonlinear, fast evolving dynamics 

are considered to be beyond the realm of the MPC. However, recent studies in the literature 

showed that the MPC algorithm is applicable to nonlinear, hybrid, fast evolving dynamics 

systems. In the industries, many processes are nonlinear. However, MPC algorithms are 

mainly applied to linear or linearized processes. There are two reasons for this preference: the 

first one is, identification of a linear system is easy and the second reason is, if the plant 

operates around the linearized working point, the linearized system gives precisely true results. 

Furthermore, if the system is linearized, it creates a convex objective function that is easier to 

optimize for each time step and these kind of objective functions are well established and 

studied over time for the commercial products. If the system is not linearized around a 

working point and constraints are assumed as nonlinear, then a Nonlinear Model Predictive 

Controller (NMPC) is utilized to control the system.  

 

 For most of the processes in the industry, the system is nonlinear and the working point 

of the system changes much often. NMPC are not frequently used in the market, however, it 

has applications on some products that has high nonlinearities and change of operating points. 

Today, NMPC applications are growing due to advances in technology and computing power 

and seems to have a promising future for future products. However, NMPC algorithms has 

also some drawbacks compared to their linear counterparts. Solution of a nonlinear objective 

function is much harder compared to a convex objective function. Also, finding the global 

optimum of a nonlinear problem is not always guaranteed.  

 

 As described above, different kind of system models can be used for the identification of 



the system. Nonlinear models are generally difficult to construct since there are no knowledge 

about how to cover all the nonlinearities in the system. Another problem is, it is not generally 

known which parameter to include to the model. Nonlinear models overall can be divided into 

mainly two categories. These are input-output models and the state-space models.  

 

 Input-output models can be percieved as mapping between the state input and 

corresponding output at the following time step. This kind of models are generally discrete-

time. A general representation of this kind of models are nonlinear auto-regressive moving 

avarage model with exogenous input (NARMAX). Mathematical description of a NARMAX 

model is given in the following equation, 

 𝑦(𝑘) = 𝑓[𝑦(𝑘 − 1),… , 𝑦(𝑘 − 𝑛), 𝑢(𝑘 − 1),… , 𝑢(𝑘 − 𝑛), 𝑒(𝑘 − 1),… , 𝑒(𝑘 − 𝑛)]   (5.1)

 where y is the output, k is the discrete time, u is the input, e is the error and f is the 

mapping function.  

 

 Volterra models are the first class are the first type of nonlinear model templates which 

became highly successful in linear MPC field.They generally resemble the Taylor series 

expansion of a model. The mathematical representation of the Volterra models are as follows, 

 𝑦(𝑘) = 𝑦0 + ∑ ℎ1(𝑙)𝑢(𝑡 − 𝑙) + ∑ ∑ ℎ2
𝑀
𝑚=0

𝑀
𝑙=0

𝑁
𝑙=0 (𝑙,𝑚)𝑢(𝑘 − 𝑖)𝑢(𝑘 − 𝑗)                (5.2)

 The first term after y0 is the linear term and the remaining term adds the nonlinearity into 

equation. The other type of nonlinear model is the local models. The main idea of the local 

models is dividing the curve into local linearities. The advantegous part of the local models 

compared to neural networks are they are not black-box and relationships between the 

parameters can be seen clearly. The nonlinear model is divided into submodels and each 

submodel can be thought as a linearized system. Mathematical representation of the local 

models can be depicted as follows, 

 𝑦(𝑘 + 1) = 𝑓(𝜇(𝑘), 𝜋(𝑘)) = ∑ 𝑓𝑙
𝑀
𝑙=0 (𝜇(𝑘)), 𝜎𝑙(𝜋(𝑘))                               (5.3)

 There are M submodels in the nonlinear model and σ is the basis function. The basis 

functions decide to include the submodel approximation into the nonlinear model.  

 

 The ANNs are one of the most utilized nonlinear models in the MPC algorithms. They 

are able to seize the nonlinear dynamics of the system and model it in a black-box fashion. 

Since ANNs are universal approximators, they can model any nonlinear system with ease. 

Large scale success of the ANNs in the MPC applications have paved the way for utilization 



of ANNs in many appliances in the industry and consumer products. The applications of 

ANNs to MPC algorithms will be widely covered in the upcoming subsections since the case 

study in the following chapter will utilize an ANN for the identification of the nonlinear 

system. 

 

 The linear state-space models can be modified to cover nonlinear dynamics of the 

system. A nonlinear system can be represented in the state-space form with the following 

equations, 

 𝑥(𝑘 + 1) = 𝐹(𝑥(𝑘), 𝑢(𝑘))                                           (5.4) 

 𝑦(𝑘) = 𝐺(𝑥(𝑘))                                 (5.5) 

 Where x is the state vector and F and G are the nonlinear mappings. It should be noticed 

that if the differential equations that represent the dynamic behavior of the system is known, 

then the differential equations can be converted to the above-described equation form. The 

most used form of state-space representation is Piece Wise Affine models. They divide the 

nonlinear model into local linear models and process them seperately. Mathematically, the 

Piece Wise Affine models can be shown as follows, 

 𝑥(𝑘 + 1) = 𝐴𝑖𝑥(𝑘) + 𝐵𝑖𝑢(𝑘) + 𝑓𝑖                                (5.6)

  

 5.2. Nonlinear Model Predictive Control 

 The basic idea of the NMPC algorithms are, at an sampling time k, the behavior of the 

system is optimized over a time horizon m=1,2,3,...,M (Grüne and Pannek, 2011). The optimal 

sequence of the inputs over time is calculated to make the system follow the reference 

trajectory stably. The basic idea and block diagram of the NMPC algorithm are depicted in 

Figure 5.1 and Figure 5.2, respectively.  

 



Figure 5.1. The NMPC algorithm (Nguyen and Szczerbicki, 2009) 

 

Figure 5.2. Block diagram of a NMPC algorithm (Yakub, 2013) 

  

Assume that the plant is formalized as follows, 

 𝑥∗ = 𝐹(𝑥∗, 𝑢∗)                                                (5.7) 

 The states and the inputs are generally limited with constraints. Limiting the states with 

constraints makes the control problem more sensible. For example, a mass can not move 100 

metres in around 0.1 seconds. Also, most of the time the inputs and the change of inputs are 

limited with constraints. For example, a force acting on a mass can not change from 2 Newton 

to 5000 Newton in a small time step. These constraints are depicted as follows, 

 𝑢𝑚𝑖𝑛 < 𝑢(𝑘 + 𝑚) < 𝑢𝑚𝑎𝑥, m=1,2,3,...,nu-1                              (5.8) 

 ∆𝑢𝑚𝑖𝑛 < ∆𝑢(𝑘 + 𝑚) < ∆𝑢𝑚𝑎𝑥, m=1,2,3,...,nu-1                             (5.9) 

 𝑥𝑚𝑖𝑛 < 𝑥(𝑘 + 𝑚) < 𝑥𝑚𝑎𝑥, m=1,2,3,...,n-1                            (5.10) 

 Where min and max superscripts show the minimum and maximum notations, 

respectively. Thereafter, the objective function of the NMPC algorithm can be formalized as 

follows, 

 𝐽 = ∑ (𝑦𝑟𝑒𝑓(𝑘 + 𝑚|𝑘) − 𝑦𝑝𝑟𝑒𝑑(𝑘 + 𝑚|𝑘))
2

+𝑛
𝑚=1 ∑ 𝜇(∆𝑢(𝑘 + 𝑚|𝑘))

2𝑛−1
𝑚=0           (5.11) 

 Where µ  is the weighting factor and Δu is the input increment. The input increment can 

be formalized as follows, 



 ∆𝑢(𝑘 + 1) = 𝑢(𝑘 + 1) − 𝑢(𝑘)                             (5.12) 

 The input sequence can be predicted by optimizing the objective function consequently 

for the each time step. With the above mentioned definitions, the basic NMPC algorithm for 

the constant state reference trajectory can be algorithmically represented as follows, 

1. Obtain the states of the system. 

2. Minimize the objective function given in Eq. (5.11) subject to constraints given 

in Eqs. (5.8) – (5.10). 

3. Calculate the optimum input and apply it to the system. 

4. Jump to the next time step and return to the first step of the algorithm until the 

last time step has been reached.  

 The algorithm must be feasible for implementation. That means, for each time step, there 

must be an optimal input available. For the each time step, newly calculated inputs must be 

supplied back to the system as the state feedback law. 

 5.3. Utilization of  the Neural Networks in Model Predictive Control 

 The ANNs are widely-used for the modeling of the system to be utilized in MPC 

(Nguyen and Szczerbicki, 2009). General representation of a Nonlinear Auto Regressive with 

External Input (NARX) model can be depicted as follows, 

 𝑦(𝑘) = 𝑓[𝑢(𝑘 − 1),… , 𝑢(𝑘 − 𝑛),… , 𝑦(𝑘 − 1),… , 𝑦(𝑘 − 𝑛)]                         (5.13) 

 Where n is the previous time values of the inputs and the states and f is a nonlinear 

function that can be thought as combination of activation functions. Generally, Multi Layer 

Perceptron (MLP) and Radial Basis Function (RBF) architectures are utilized for the modeling 

of the nonlinear systems since both of them are considered as universal approximators. 

Furthermore, they both have less parameters to be tuned and both have simple structures. 

Block diagram representation of a Neural Network Predictive Controller (NNPC) is shown in 

Figure 5.3. 



 

Figure 5.3. Block diagram of a NNPC (Vasickaninova et al., 2011) 

 As can be seen from the Figure 5.3, at first, the neural network model is trained with the 

input-output data of the plant. Thereafter, the objective function that is given in Eq. (5.11) is 

formed with the outputs of the neural network model and the objective function is optimized at 

each time step.   

 

 The output of the MLP model can be mathematically depicted as follows, 

 𝑦(𝑘) = 𝑤0
2 + ∑ 𝑤𝑎

2𝛼(𝑧𝑎(𝑘))𝑀
𝑎=1                              (5.14) 

 Where α is the nonlinear activation function, a is the number of neurons in the hidden 

layer and z is the sum of the inputs of the neural network. Value of z can be calculated as, 

 𝑧(𝑘) = 𝑤0
1 + ∑ 𝑤𝑖,𝑗

1 𝑢(𝑘 − 𝜇 + 1 − 𝑗) + ∑ 𝑤𝑖,𝛼+𝑗
1𝑛

𝑗=1 𝑦(𝑘 − 𝑗)𝛼
𝑗=1                          (5.15) 

 Where µ is the time delay. RBF method utilizes Gaussion activation function in the 

hidden layer neurons. Mathematical formulation of the output of a RBF is given below, 

 𝑦(𝑘) = 𝑤0
2 + ∑ 𝑤𝑎𝑒𝑥𝑝(−||𝑥(𝑘) − 𝑐𝑎||)𝑀

𝑎=1                              (5.15) 

 Graphical demonstration of a RBF is given in Figure 5.4. 

 



 

Figure 5.4. RBF neural network (Faris et al., 2017) 

 

 In the NNPC, nonlinear models such as MLP and RBF are utilized to calculate future 

predictions of the states. Afterwards, these predictions are utilized for the calculation of the 

future optimal inputs to the system in the objective function. Future predictions of the states 

can be calculated as, 

 𝑦𝑝(𝑘 + 𝑚|𝑘) = 𝑦(𝑘 + 𝑚|𝑘) + 𝑑(𝑘)                             (5.16) 

 Where d is the disturbance to the system and p superscript shows the predicted state. By 

utilizing the predictions in the objective function, Eq. (5.11), the NNPC algorithm turns into a 

dynamic nonlinear optimization problem. As discussed in Chapter 3, there are various type of 

modern nonlinear optimization techniques that can be applied to solve the optimization 

problem. The traditional techniques may stuck to a local minimum and cause the interruption 

of the algorithm. However, modern techniques can overcome this issue and run the algorithm 

smoothly.    

      

  

 

 

 



6. NEURAL NETWORK PREDICTIVE CONTROL OF A VAPOR 

COMPRESSION CYCLE 

 6.1. Fundamentals of Vapor Compression Cycle Control 

 As discussed in the other chapters, a basic Vapor Compression Cycle (VCC) consists of 

four components. These are the compressor, expansion valve, evaporator and condenser. 

Schematic representation and pressure-enthalpy diagram of a vapor compression cycle is 

depicted in Figure 6.1.  

 

 

Figure 6.1. a) Schematic representation of a VCC b) Pressure-enthalpy diagram of the VCC 

(Wen and Mishra, 2018) 

 

 Basically, four different processes occur in a VCC. These are, isentropic compression 

process in the compressor, isobaric condensation process in the condenser, isentropic 

expansion process in the expansion valve and isobaric evaporation process in the evaporator 

(Wen and Mishra, 2018). To ensure the stability and optimal operation of the VCC systems, 

effective control systems can be developed. The control strategies should be effective 

particularly during start-up of the system and changing of the operating conditions. Variation 

of the compressor motor speed and openness of the expansion valve can directly affect the 

mass flow rate of the refrigerant and change the performance and load of the system 

immediately. On the other hand, change of the external temperature can affect the system more 

slowly.  

 

 Many of the industrial and household HVAC systems have long start-up times 

(Rasmussen and Alleyne, 2006). For this reason, single-input single-output (SISO) or bang-

bang type of controllers had been developed for the HVAC systems primarily. However, it has 

been later realized that bang-bang controllers limit the system’s effectivity due to requiring 



unnecessarily large amount of power during the start-up transients. Also, SISO controllers do 

not perform well due to not considering cross-coupled nature of the VCC system dynamics. 

Applying multivariable control algorithms can be a good alternative to the bang-bang or SISO 

algorithms. The multivariable control algorithm can control more than one inputs while 

optimizing more than one objective simultaneously.  

 

 To optimally operate a VCC system, two-phase flow portion in the evaporator must be 

maximized. The two-phase region in the evaporator is where the most of the heat transfer 

between the refrigerant and the secondary fluid occurs. Thus, it can be concluded that the 

cooling load of a VCC is heavily dependant on the length of the two-phase region in the 

evaporator. However, to ensure the stability of the cycle and the compressor, the refrigerant 

entering the compressor must be in vapor phase. Therefore, most of the time, the superheat 

temperature is arranged as 5°C above the saturation temperature for the systems without a 

receiver.  

 

 Generally, implementing various control objectives at the same time is considered 

impractical for the HVAC systems. This kind of complex algorithms are only applied to large 

industrial processes where the economic benefits of implementing these algorithms are 

significant. As discussed above, applying multivariable control strategies to the VCC or 

HVAC systems can be a great alternative to other complex control strategies since they require 

extensive paremeter tuning. Multivariable control strategies can be easily applied to lumped 

models and can effectively optimize different control objectives simultaneously such as 

maximizing COP, minimizing compressor work, maximizing second law efficiency, etc..  

 6.2. Dynamic Modeling of the Heat Exchangers 

 Heat exchangers can be of many different types by their tube design, size and direction 

of the fluid flow inside the tubes (Figure 6.2). It is intended to optimize the work of the heat 

exchangers in the VCC where various phenomenons that happen in the components lead to 

different performance outcomes. For this reason, various modeling approaches have been 

applied to the heat exchangers. 



 

Figure 6.2. Different designs of heat exchangers (Wen and Mishra, 2018) 

 

 6.2.1. Multi-phase Flows in the Heat Exchangers 

 Evaporation and condensation processes that occur in the heat exchangers are the main 

source of the heat transfer in the VCC. For this reason, this processes must be modeled exactly 

and carefully with taking into account of heat exchanger geometry, size and some other 

properties. Demonstrations of some types of multi-phase flows are given in Figure 6.3. Some 

commercial packages can model the multi-phase flow in a heat exchanger accurately. 

However, control of a VCC system can not be carried out with these kind of approaches. 

  

 

 

Figure 6.3. Different types of multi-phase flows in the heat exchangers (Wen and Mishra, 

2018) 

 For the reasons described above, more simple one-dimensional uniform flow models 



are considered for the modeling of the heat exchangers. Earlier models utilized the lumped 

parameter approach for the modeling of the whole heat exchanger. However, this approach did 

not result in favorable outcomes. Modern approaches relies on discretizing the heat exchanger 

into smaller pieces. The modern approaches result in more favorable outcomes while having 

the burden of extensive computational load. The two modern approaches that are widely used 

in the literature are Moving Boundary (MB) and Finite Control Volume (FCV). These two 

approaches are briefly described in the Chapter 2. More detailed descriptions of these 

approaches have been given place in the following sub-sections.  

 6.2.2. Fixed Control Volume Approaches 

 FCV approaches can be accomplished by two ways, one is dividing the heat exchanger 

into pieces and taking the avarage values of the each divided part and the second is directly 

discretizing the differential equation. This kind of approaches can model the heat transfer 

taking place in the heat exchanger precisely. The downside of the FCV approach is, it may 

require high computational power to calculate the outcome. A demonstration of a discretized 

condenser with the FCV method is given in Figure 6.4. 

  

 

Figure 6.4. Discretized heat exchanger (Wen and Mishra, 2018) 

 

 Following steps have been followed for the modeling of the condenser, 

 Conservation of the mass along the heat exchanger tube is determined by using the Eq. 

(6.1). 

 Conservation of the energy along the heat exchanger tube is extended in terms of 

enthalpy and pressure. 

 Conservation of the wall energy is given in Eq. (6.4). 



 Following formulas can be utilized for the modeling of the condenser, 

 �̇�𝑐𝑜𝑛𝑑,𝑖 = �̇�𝑖−1-�̇�𝑖                                            (6.1) 

 �̇�𝑖 = 𝐶𝑑𝐴√𝜌(𝑃𝑖 − 𝑃𝑖+1)                                (6.2) 

 �̇�𝑖=�̇�𝑖−1ℎ𝑖−1 + �̇�𝑖ℎ𝑖 + 𝑞𝑖 = �̇�𝑖𝑢𝑖 + �̇�𝑖 (
𝑑𝑢𝑖

𝑑𝑃𝑐
�̇�𝑖 +

𝑑𝑢𝑖

𝑑ℎ𝑖
ℎ̇𝑖)                                       (6.3) 

 𝑞𝑖 = 𝛼𝐴(𝑇𝑤,𝑖 − 𝑇𝑟,𝑖)                                 (6.4) 

 𝑞𝑜 = 𝛼𝐴(𝑇𝑎𝑖𝑟,𝑖 − 𝑇𝑤,𝑖)                                            (6.5) 

 �̇�𝑤,𝑖 = 𝑞𝑜 − 𝑞𝑖                                  (6.6) 

 The above given equations can be transformed into the following form, 

 [
𝐴11 𝐴12 0
𝐴12 𝐴12 0
0 0 𝐴33

]

[
 
 
 
 
 
 
 

�̇�
ℎ̇1

⋮
ℎ̇𝑛

�̇�𝑤,1

⋮
�̇�𝑤,𝑛]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

�̇�𝑖(ℎ̇𝑖 − ℎ̇1) + 𝑞𝑖

⋮
�̇�𝑖(ℎ̇𝑘−𝑖 − ℎ̇1) + 𝑞𝑖

�̇�𝑖 − �̇�𝑜

𝑞𝑜,1 − 𝑞𝑖,1

⋮
𝑞𝑜,𝑘 − 𝑞𝑖,𝑘 ]

 
 
 
 
 
 
 

                             (6.7) 

 Where k is the number of discretized volumes. Using more than twenty control volumes 

gives acceptable results according to the literature. Also, utilizing more control volumes 

results in more computational load.  

 6.2.3. Moving Boundary Model 

 The Moving Boundary (MB) method utilizes lumped parameter for the each phase in the 

heat exchanger instead of the FCV method which divides the heat exchanger into small control 

volumes and accomplish the calculations for the each volume. The boundaries that are 

dividing the each phase are assumed to time-variant in the MB method. MB representation of a 

condenser is given in the Figure 6.5. The main idea of the MB method is capturing the 

dynamics of the boundaries between the phases at the same time having as low as equations as 

possible.  

 

 To achieve the formalization of the MB model of a condenser, analyzing the behavior of 

a single-phase heat exchanger is a sensible approach. Demonstration of a simple single-phase 

exchanger is given in Figure 6.6. Following assumptions have been made during the MB 

model development (Rasmussen and Alleyne, 2006), 

 The heat exchanger is double pipe type and the tubes are horizontal and long enough. 

 The flow in the heat exchanger is one-dimensional. 

 Axial conduction phenomenon in the heat exchangers is insignificant. 



 Pressure drop accross the heat exchanger that occurs due to friction is neglected. 

 

 

Figure 6.5. MB depiction of a heat exchanger (Wen and Mishra, 2018) 

  

Figure 6.6. Single-phase heat exchanger (Rasmussen and Alleyne, 2006) 

 

 The general partial differential equations (PDE) that represent the conservation of 

energy and mass can be reduced into one-dimensional equations by taking above described 

assumptions into account. Following equations describe the general behavior of the refrigerant 

energy and mass conservation and the tube wall energy conservation, 

 
𝝏𝝆

𝝏𝒕
+ 𝛁(𝝆𝒖) = 𝟎                                                       (6.8) 

 
𝝏(𝝆𝒖)

𝝏𝒕
+ 𝛁(𝝆𝒖𝒖) = 𝝆𝒇 + 𝛁𝜷                                           (6.9) 

 
𝝏(𝝆𝑨𝒄𝒓)

𝝏𝒕
+

𝝏(�̇�)

𝝏𝒙
= 𝟎                               (6.10) 

 
𝝏(𝝆𝑨𝒄𝒓𝒉−𝑨𝒄𝒓𝑷)

𝝏𝒕
+

𝝏(𝒎𝒉̇ )

𝝏𝒙
= 𝒅𝒊𝜶𝒊(𝑻𝒘𝒂𝒍𝒍 − 𝑻𝒓𝒆𝒇)                            

(6.11) 

 (𝑪𝒑𝝆𝑨)
𝒘𝒂𝒍𝒍

𝝏(𝑻𝒘𝒂𝒍𝒍)

𝝏𝒕
=𝒅𝒊𝜶𝒊(𝑻𝒓𝒆𝒇 − 𝑻𝒘𝒂𝒍𝒍) + 𝒅𝒐𝜶𝒐(𝑻𝒂𝒊𝒓 − 𝑻𝒘𝒂𝒍𝒍)                         (6.12) 

 By employing Leibniz’s equation on these equations, they can be transformed into 



ordinary differential equations or grouped into the matrix (state-space) form. The main 

conservation of refrigerant mass equation for a single-phase heat exchanger can be formalized 

as in Eq. (6.13). By applying integration to the formula along the tube, the equation transforms 

into Eq. (6.14). Then the equation transforms into Eq. (6.15) by utilizing the Leibniz’s 

equation. Finally, dividing the calculation into seperate thermodynamic variables and taking 

the conservation of mass results in Eq. (6.20). 

 
𝝏(𝝆𝑨𝒄𝒓)

𝝏𝒕
+

𝝏(�̇�)

𝝏𝒙
= 𝟎                                          (6.13) 

 ∫
𝝏(𝝆𝑨𝒄𝒓)

𝝏𝒕
𝒅𝒙 =

𝑳𝒕𝒐𝒕

𝟎
𝑨𝒄𝒓 [∫

𝝏𝝆

𝝏𝒕
𝒅𝒙

𝑳𝒕𝒐𝒕

𝟎
]                             (6.14) 

 ∫
𝝏(𝝆𝑨𝒄𝒓)

𝝏𝒕
𝒅𝒙 =

𝑳𝒕𝒐𝒕

𝟎
𝑨𝒄𝒓 [∫ 𝝆𝒅𝒙

𝑳𝒕𝒐𝒕

𝟎
]                             (6.15) 

 ∫
𝝏(𝝆𝑨𝒄𝒓)

𝝏𝒕
𝒅𝒙 =

𝑳𝒕𝒐𝒕

𝟎
𝑨𝒄𝒓[𝝆𝒄𝒐𝑳𝒕𝒐𝒕]                             (6.16) 

 ∫
𝝏(𝝆𝑨𝒄𝒓)

𝝏𝒕
𝒅𝒙 =

𝑳𝒕𝒐𝒕

𝟎
𝑨𝒄𝒓[�̇�𝒄𝒐𝑳𝒕𝒐𝒕]                             (6.17) 

 ∫
𝝏(𝝆𝑨𝒄𝒓)

𝝏𝒕
𝒅𝒙 =

𝑳𝒕𝒐𝒕

𝟎
𝑨𝒄𝒓𝑳𝒕𝒐𝒕 [(

𝝏𝝆

𝝏𝑷𝒄𝒐
|
𝒉𝒄𝒐

)𝑷𝒄𝒐 + (
𝝏𝝆

𝝏𝒉𝒄𝒐
|
𝑷𝒄𝒐

)𝒉𝒄𝒐]                         (6.18) 

 ∫
𝝏(�̇�)

𝝏𝒙

𝑳𝒕𝒐𝒕

𝟎
𝒅𝒛 = �̇�𝒐 − �̇�𝒊                                         (6.19) 

 [(
𝝏𝝆

𝝏𝑷𝒄𝒐
|
𝒉𝒄𝒐

)𝑨𝒄𝒓𝑳𝒕𝒐𝒕𝑷𝒄𝒐] + [(
𝝏𝝆

𝝏𝒉𝒄𝒐
|
𝑷𝒄𝒐

)𝑨𝒄𝒓𝑳𝒕𝒐𝒕𝒉𝒄𝒐] + �̇�𝒐 − �̇�𝒊 = 𝟎                       

(6.20) 

 The main conservation of refrigerant equation for a single-phase heat exchanger is 

given in Eq. (6.21). The equation is integrated along the tube and Eq. (6.22) is obtained. 

Afterwards, the Leibniz’s equation is applied and Eq. (6.23) is obtained. Finally, after dividing 

the thermodynamic properties into sub-properties and rearranging the equations, Eq. (6.31) is 

found. 

 
𝝏(𝝆𝑨𝒄𝒓𝒉−𝑨𝒄𝒓𝑷)

𝝏𝒕
+

𝝏𝒎𝒉̇

𝝏𝒙
= 𝒅𝒊𝜶𝒊(𝑻𝒘𝒂𝒍𝒍 − 𝑻𝒓𝒆𝒇)                            (6.21) 

 ∫
𝝏(𝝆𝑨𝒄𝒓𝒉)

𝝏𝒕
𝒅𝒙 =

𝑳𝒕𝒐𝒕

𝟎
𝑨𝒄𝒓 [∫

𝝏𝝆𝒉

𝝏𝒕
𝒅𝒙

𝑳𝒕𝒐𝒕

𝟎
]                            (6.22) 

 ∫
𝝏(𝝆𝑨𝒄𝒓𝒉)

𝝏𝒕
𝒅𝒙 =

𝑳𝒕𝒐𝒕

𝟎
𝑨𝒄𝒓 [

𝒅

𝒅𝒕
∫ 𝝆𝒉𝒅𝒙

𝑳𝒕𝒐𝒕

𝟎
]                                       (6.23) 

 ∫
𝝏(𝝆𝑨𝒄𝒓𝒉)

𝝏𝒕
𝒅𝒙 =

𝑳𝒕𝒐𝒕

𝟎
𝑨𝒄𝒓𝑳𝒕𝒐𝒕[�̇�𝒉 + 𝝆�̇�]                            (6.24) 

 ∫
𝝏(𝝆𝑨𝒄𝒓𝒉)

𝝏𝒕
𝒅𝒙 =

𝑳𝒕𝒐𝒕

𝟎
𝑨𝒄𝒓𝑳𝒕𝒐𝒕 [[(

𝝏𝝆

𝝏𝑷𝒄𝒐
|
𝒉𝒄𝒐

) �̇�𝒄𝒐 + (
𝝏𝝆

𝝏𝒉𝒄𝒐
|
𝑷𝒄𝒐

) �̇�𝒄𝒐] + 𝝆�̇�]                     

(6.25) 

 ∫
𝝏(𝝆𝑨𝒄𝒓𝒉)

𝝏𝒕
𝒅𝒙 =

𝑳𝒕𝒐𝒕

𝟎
(

𝝏𝝆

𝝏𝑷𝒄𝒐
|
𝒉𝒄𝒐

𝒉𝒄𝒐)𝑨𝒄𝒓𝑳𝒕𝒐𝒕�̇�𝒄𝒐 + (
𝝏𝝆

𝝏𝑷𝒄𝒐
|
𝒉𝒄𝒐

𝒉𝒄𝒐 + 𝝆)𝑨𝒄𝒓𝑳𝒕𝒐𝒕�̇�𝒄𝒐  (6.26) 



 ∫
𝝏(𝑷𝑨𝒄𝒓)

𝝏𝒕
𝒅𝒙

𝑳𝒕𝒐𝒕

𝟎
= 𝑨𝒄𝒓 ∫

𝝏𝑷

𝝏𝒕
𝒅𝒙

𝑳𝒕𝒐𝒕

𝟎
                             (6.27) 

 ∫
𝝏(𝑷𝑨𝒄𝒓)

𝝏𝒕
𝒅𝒙

𝑳𝒕𝒐𝒕

𝟎
= 𝑨𝒄𝒓𝑷𝑳𝒕𝒐𝒕                              (6.28) 

 ∫
𝝏(�̇�𝒉)

𝝏𝒙
𝒅𝒙 = �̇�𝒐𝒉𝒐 − �̇�𝒊𝒉𝒊

𝑳𝒕𝒐𝒕

𝟎
                             (6.29) 

 ∫ 𝒅𝒊
𝑳𝒕𝒐𝒕

𝟎
𝜶𝒊(𝑻𝒘𝒂𝒍𝒍 − 𝑻𝒓𝒆𝒇)𝒅𝒙 = 𝑳𝒕𝒐𝒕𝒅𝒊𝜶𝒊(𝑻𝒘𝒂𝒍𝒍 − 𝑻𝒓𝒆𝒇)                          (6.30) 

 (
𝝏𝝆

𝝏𝑷𝒄𝒐
|
𝒉𝒄𝒐

𝒉𝒄𝒐 + 𝟏)𝑨𝒄𝒓𝑳𝒕𝒐𝒕�̇�𝒄𝒐 + (
𝝏𝝆

𝝏𝑷𝒄𝒐
|
𝒉𝒄𝒐

𝒉𝒄𝒐 + 𝝆) 𝑨𝒄𝒓𝑳𝒕𝒐𝒕�̇�𝒄𝒐 + 

             �̇�𝒐𝒉𝒐 − �̇�𝒊𝒉𝒊 = 𝒅𝒊𝜶𝒊(𝑻𝒘𝒂𝒍𝒍 − 𝑻𝒓𝒆𝒇)                            (6.31)   

  Conservation of wall energy can be formulated with the Eq. (6.32). By integrating the 

equation along the heat exchanger tube and rearranging the equation leads to Eq. (6.34) 

 (𝑪𝒑𝝆𝑨)
𝒘𝒂𝒍𝒍

𝝏(𝑻𝒘𝒂𝒍𝒍)

𝝏𝒕
= 𝒅𝒊𝜶𝒊(𝑻𝒓𝒆𝒇 − 𝑻𝒘𝒂𝒍𝒍) + 𝒅𝒐𝜶𝒐(𝑻𝒂𝒊𝒓 − 𝑻𝒘𝒂𝒍𝒍)                         (6.32) 

 (𝑪𝒑𝝆𝑨)
𝒘𝒂𝒍𝒍

𝑳𝒕𝒐𝒕
𝝏(𝑻𝒘𝒂𝒍𝒍)

𝝏𝒕
= 𝒅𝒊𝜶𝒊𝑳𝒕𝒐𝒕(𝑻𝒓𝒆𝒇 − 𝑻𝒘𝒂𝒍𝒍) + 𝒅𝒐𝜶𝒐𝑳𝒕𝒐𝒕(𝑻𝒂𝒊𝒓 − 𝑻𝒘𝒂𝒍𝒍)  (6.33) 

 (𝑪𝒑𝝆𝑽)
𝒘𝒂𝒍𝒍

𝝏(𝑻𝒘𝒂𝒍𝒍)

𝝏𝒕
= 𝒅𝒊𝜶𝒊(𝑻𝒓𝒆𝒇 − 𝑻𝒘𝒂𝒍𝒍) + 𝒅𝒐𝜶𝒐(𝑻𝒂𝒊𝒓 − 𝑻𝒘𝒂𝒍𝒍)                           

(6.34) 

 Collecting all equations into one matrix equation form results in a 𝑨�̇� = 𝒃 type of 

equation. The equation is as follows, 

 [
𝒁𝟏𝟏 𝒁𝟏𝟐 𝟎
𝒁𝟏𝟐 𝒁𝟐𝟐 𝟎
𝟎 𝟎 𝒁𝟑𝟑

] [

�̇�𝒄𝒐𝒏𝒅

�̇�𝒄𝒐𝒏𝒅

�̇�𝒘𝒂𝒍𝒍

] = 

            [

�̇�𝒊𝒉𝒊 − �̇�𝒐𝒉𝒐 − 𝒅𝒊𝜶𝒊(𝑻𝒘𝒂𝒍𝒍 − 𝑻𝒓𝒆𝒇)

�̇�𝒊𝒉𝒊 − �̇�𝒐𝒉𝒐

𝒅𝒊𝜶𝒊(𝑻𝒓𝒆𝒇 − 𝑻𝒘𝒂𝒍𝒍) − 𝒅𝒐𝜶𝒐(𝑻𝒂𝒊𝒓 − 𝑻𝒘𝒂𝒍𝒍)

]                                                            

(6.35) 

 The Z coefficients can be calculated by using the equations depicted in Figure 6.7. 



 

Figure 6.7. The Z coefficients (Rasmussen and Alleyne, 2006) 

 Afterwards, the MB model of a condenser can be accomplished by referencing Figure 

6.5 with the equations given below,  

 𝑨𝑳𝒄𝒐𝟏 (
𝒅𝝆𝒄𝒐𝟏

𝒅𝑷𝒄𝒐
�̇�𝒄𝒐 +

𝒅𝝆𝒄𝒐𝟏

𝒅𝒉𝒄𝒐𝟏
�̇�𝒄𝒐𝟏) + 𝑨𝑳𝒄𝒐𝟏(𝝆𝒄𝒐𝟏 − 𝝆𝒗𝒂𝒑) = �̇�𝒊 − �̇�𝒊𝒏𝒕𝒆,𝟏                   

(6.36)                                                     𝑨𝑳𝒄𝒐𝟐 (
𝒅𝝆𝒄𝒐𝟐

𝒅𝑷𝒄𝒐
) �̇�𝒄𝒐 + 𝑨(𝝆𝒗𝒂𝒑 − 𝝆𝒍𝒊𝒒)(�̇�𝒄𝒐𝟏 +

𝜸�̇�𝒄𝒐𝟐) = �̇�𝒊𝒏𝒕𝒆,𝟏 − �̇�𝒊𝒏𝒕𝒆,𝟐             (6.37) 

 𝑨𝑳𝒄𝒐𝟑 (
𝒅𝝆𝒄𝒐𝟑

𝒅𝑷𝒄𝒐
�̇�𝒄𝒐 +

𝒅𝝆𝒄𝒐𝟑

𝒅𝒉𝒄𝒐𝟑
�̇�𝒄𝒐𝟑) + 𝑨𝑳𝒄𝒐𝟑(𝝆𝒄𝒐𝟑 − 𝝆𝒍𝒊𝒒) = �̇�𝒊𝒏𝒕𝒆,𝟑 − �̇�𝒍𝒊𝒒             (6.38) 

 𝑨𝑳𝒄𝒐𝟏 [(
𝒅𝝆𝒄𝒐𝟏𝒉𝒄𝒐𝟏

𝒅𝑷𝒄𝒐
− 𝟏) �̇�𝒄𝒐 +

𝒅𝝆𝒄𝒐𝟏𝒉𝒄𝒐𝟏

𝒅𝑷𝒄𝒐
�̇�𝒄𝒐𝟏] +  𝑨𝑳𝒄𝒐𝟏(𝝆𝒄𝒐𝟏𝒉𝒄𝒐𝟏 − 𝝆𝒗𝒂𝒑𝒉𝒗𝒂𝒑) = 

              �̇�𝒊𝒉𝒊 − �̇�𝒊𝒏𝒕𝒆,𝟏𝒉𝒊𝒏𝒕𝒆,𝟏 + 𝒒𝒊𝒏𝟏                                                    

(6.39) 

 𝑨𝑳𝒄𝒐𝟐 (
𝒅𝝆𝒄𝒐𝟐𝒉𝒄𝒐𝟐

𝒅𝑷𝒄𝒐
− 𝟏) �̇�𝒄𝒐 + 𝑨(𝝆𝒗𝒂𝒑𝒉𝒗𝒂𝒑 − 𝝆𝒍𝒊𝒒𝒉𝒍𝒊𝒒)(�̇�𝒄𝒐𝟏 + 𝜸�̇�𝒄𝒐𝟐) =

              �̇�𝒊𝒏𝒕𝒆,𝟏𝒉𝒊𝒏𝒕𝒆,𝟏 − �̇�𝒊𝒏𝒕𝒆,𝟐𝒉𝒊𝒏𝒕𝒆,𝟐 + 𝒒𝒊𝒏𝟐                                       (6.40) 

 𝑨𝑳𝒄𝒐𝟑 [(
𝒅𝝆𝒄𝒐𝟑𝒉𝒄𝒐𝟑

𝒅𝑷𝒄𝒐
− 𝟏) �̇�𝒄𝒐 +

𝒅𝝆𝒄𝒐𝟑𝒉𝒄𝒐𝟑

𝒅𝑷𝒄𝒐
�̇�𝒄𝒐𝟑] +  𝑨𝑳𝒄𝒐𝟑(𝝆𝒄𝒐𝟑𝒉𝒄𝒐𝟑 − 𝝆𝒍𝒊𝒒𝒉𝒍𝒊𝒒) =

               �̇�𝒊𝒏𝒕𝒆,𝟐𝒉𝒊𝒏𝒕𝒆,𝟐 − �̇�𝒍𝒊𝒒𝒉𝒍𝒊𝒒 + 𝒒𝒊𝒏𝟑                                                                        (6.41) 

 (𝑴𝒄𝒑)𝒘𝒂𝒍𝒍
[(

𝑻𝒘𝒂𝒍𝒍,𝟏−𝑻𝒊𝒏𝒕𝒆,𝟏

𝑳𝒕𝒐𝒕
) �̇�𝒄𝒐𝟏 + 𝜹𝒄𝒐𝟏�̇�𝒘𝒂𝒍𝒍,𝟏] = 𝒒𝒐𝒖𝒕𝟏 − 𝒒𝒊𝒏𝟏                         (6.42) 

 (𝑴𝒄𝒑)𝒘𝒂𝒍𝒍
�̇�𝒘𝒂𝒍𝒍,𝟐 = 𝒒𝒐𝒖𝒕𝟐 − 𝒒𝒊𝒏𝟐                                        (6.43) 

 (𝑴𝒄𝒑)𝒘𝒂𝒍𝒍
[(

𝑻𝒘𝒂𝒍𝒍,𝟑−𝑻𝒊𝒏𝒕𝒆,𝟑

𝑳𝒕𝒐𝒕
) �̇�𝒄𝒐𝟑 + 𝜹𝒄𝒐𝟑�̇�𝒘𝒂𝒍𝒍,𝟑] = 𝒒𝒐𝒖𝒕𝟑 − 𝒒𝒊𝒏𝟑                         (6.44) 

 Some of the parameters that are utilized in the equations above can be calculated as 

follows, 

 𝜹𝒄𝒐𝟏=
𝑳𝒄𝒐𝟏

𝑳𝒕𝒐𝒕
                                                                 (6.45) 



 𝒒𝒊𝒏𝟏 = 𝜶𝒄𝒐𝟏𝑨𝒄𝒐𝟏𝜹𝒄𝒐𝟏(𝑻𝒘𝒂𝒍𝒍,𝟏 − 𝑻𝒓𝒆𝒇)                            (6.46) 

 𝒒𝒐𝒖𝒕𝟐 = 𝜶𝒄𝒐𝟐𝑨𝒄𝒐𝟐𝜹𝒄𝒐𝟐(𝑻𝒂𝒊𝒓 − 𝑻𝒘𝒂𝒍𝒍,𝟐)                            (6.47) 

 The above given equations can be grouped into matrices and form a 𝑨�̇� = 𝒃 type 

equation. The equation is given as, 

 

[
 
 
 
 
 
 
𝑨𝟏𝟏 𝟎 𝑨𝟏𝟑 𝟎 𝟎 𝟎 𝟎
𝑨𝟐𝟏 𝑨𝟐𝟐 𝑨𝟐𝟑 𝑨𝟐𝟒 𝟎 𝟎 𝟎
𝑨𝟑𝟏 𝑨𝟑𝟐 𝑨𝟑𝟑 𝑨𝟑𝟒 𝟎 𝟎 𝟎
𝑨𝟒𝟏 𝑨𝟒𝟐 𝑨𝟒𝟑 𝑨𝟒𝟒 𝟎 𝟎 𝟎
𝑨𝟓𝟏 𝟎 𝟎 𝟎 𝑨𝟓𝟓 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝑨𝟔𝟔 𝟎

𝑨𝟕𝟏 𝑨𝟕𝟐 𝟎 𝟎 𝟎 𝟎 𝑨𝟕𝟕]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

�̇�𝒄𝒐𝟏

�̇�𝒄𝒐𝟐

�̇�𝒄𝒐

�̇�𝒐𝒖𝒕

�̇�𝒘𝒂𝒍𝒍,𝟏

�̇�𝒘𝒂𝒍𝒍,𝟐

�̇�𝒘𝒂𝒍𝒍,𝟑]
 
 
 
 
 
 
 
 

=

             

[
 
 
 
 
 
 
 

�̇�𝒊𝒏(𝒉𝒊𝒏 − 𝒉𝒗𝒂𝒍) + 𝒒𝒊𝒏𝟏

�̇�𝒊𝒏𝒉𝒗𝒂𝒍 − �̇�𝒐𝒖𝒕𝒉𝒍𝒊𝒒 + 𝒒𝒊𝒏𝟐

�̇�𝒐𝒖𝒕(𝒉𝒍𝒊𝒒 − 𝒉𝒐𝒖𝒕) + 𝒒𝒊𝒏𝟑

�̇�𝒊𝒏 − �̇�𝒐𝒖𝒕

𝒒𝒐𝒖𝒕𝟏 − 𝒒𝒊𝒏𝟏

𝒒𝒐𝒖𝒕𝟐 − 𝒒𝒊𝒏𝟐

𝒒𝒐𝒖𝒕𝟑 − 𝒒𝒊𝒏𝟑 ]
 
 
 
 
 
 
 

                                         

(6.48) 

 For the solution of the equation, the A must be inverted. The inversion process can be 

achievable as long as all phase regions exist, so that values of 𝜹𝒄𝒐𝟏 and 𝜹𝒄𝒐𝟐 are greater than 

zero. Generally, for the single-phases the avarage lumped parameters are considered while 

calculating the thermodynamic and thermophysical properties for the region. However, for the 

two-phase region this consideration does not hold. A void fraction is calculated and utilized 

during the analyze of the two-phase region. The void fraction can be described as ratio of the 

vapor volume in the region to the total volume of the region. Avarage lumped properties of the 

two-phase region can be calculated with the following equation, 

𝝆𝒄𝒐𝟐𝒉𝒄𝒐𝟐 = 𝝆𝒍𝒊𝒒𝒉𝒍𝒊𝒒(𝟏 − 𝜸) + 𝝆𝒗𝒂𝒑𝒉𝒗𝒂𝒑𝜸                              

(6.49) 

 Various type of experimental correlations are given in the literature to calculate the mean 

void fraction (Wen and Mishra, 2018). Generally, there are small differences between the FCV 

and MB methods due to lumped parameter employment strategy of the MB method. The FCV 

method comes up with more accurate results. However, modifications can be made with 

lumped parameter calculating strategy of the MB method to find more accurate results.  

6.3. Case Study of Designing a Neural Network Predictive Controller for a Vapor 

Compression Cycle 

            A basic vapor compression cycle (VCC) consists of four different components: 



evaporator, condenser, expansion valve and compressor. Static relationships are often utilized 

for the modeling of the compressor and expansion valves due to capturing much faster 

evolving dynamics compared to the heat exchangers. And the modeling of the heat exchangers 

in a VCC is most often done with two different approaches that are also described before in 

this thesis. They are the Finite Control Volume (FCV) and Moving Boundary (MB) 

approaches. The FCV method employs finite-sized control volumes that divides the heat 

exchanger into small pieces. The thermodynamic and thermophysical properties of the fluid in 

each piece are considered and calculated seperately. Many commercial software packages 

relies on the FCV method and its ability to precisely calculate the outcome of the heat 

exchanger. On the other hand, in the MB method, each phase of the refrigerant in the heat 

exchanger is evaluated as a seperate control volume. The thermodynamic and thermophysical 

properties of the refrigerant in these regions are calculated as an avarage lumped parameter. 

The boundaries that seperate the each phase are considered as time-varying. Many studies in 

the literature compared the FCV method and the MB method and they found out that the FCV 

method comes up with more accurate results but has much more computational load compared 

to the MB method. The studies concluded that the MB method is a favorable alternative to the 

FCV method (Rasmussen, 2005; Rasmussen and Shenoy, 2008). The MB method is utilized 

for the modeling of the evaporator and condenser in this case study. A sample demonstration 

of a VCC modeled with the MB method is given in Figure 6.8. For simplfying the system, 

components such as accumulator and receiver are not included to the system. 

 

 The cycle employs R134a as the primary fluid and the water as the secondary fluid in 

the heat exchangers. Furthermore, the temperatures of the high-temperature and low-

temperature reservoirs are taken as 27°C and 7°C, respectively. The CoolProp library (Bell et 

al., 2014) are utilized for the determination of the thermodynamic and thermophysical 

properties of the fluids. The temperature of the high-temperature reservoir is taken as the 

environmental temperature during the exergetic calculations. 

 



 

Figure 6.8. A demonstration of a VCC modeled with the MB method 

 

 The compressor is considered as a positive-displacement compressor and the expansion 

valve is considered as an electronic expansion valve (EEV) in this case study. Static 

relationships are utilized for the modeling of the EEV and compressor in this case study due to 

having much faster evolving dynamics compared to the that of heat exchangers. As discussed 

before, the compressor is considered as adiabatic and non-isentropic while the EEV is 

considered as isentropic and isenthalpic. The mass flow rate of the refrigerant in the 

compressor is calculated as follows, 

 �̇�𝑐𝑜𝑚𝑝 = 𝜌𝑐𝑜𝑚𝑝,𝑖𝑛𝑉𝑐𝑜𝑚𝑝𝜔𝑐𝑜𝑚𝑝𝜂𝑐𝑜𝑚𝑝                              (6.50) 

 The volumetric efficiency of the compressor is calculated with the following correlation 

(Jain, 2013), 

 𝜂𝑐𝑜𝑚𝑝 = (0.65127) + (0.00027681)𝑥𝜔𝑐𝑜𝑚𝑝 + (−0.031338)𝑥
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
+

           (3.0221𝑥10−5)𝑥𝜔𝑐𝑜𝑚𝑝𝑥
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
+ (−1.1905𝑥10−7)𝜔𝑐𝑜𝑚𝑝

2 +

           (−0.0081256)𝑥 (
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
)
2

                                         (6.51) 

 The output temperature of the refrigerant from the compressor is calculated with the 

following formula, 

 
𝑇𝑐𝑜𝑚𝑝,𝑜𝑢𝑡

𝑇𝑐𝑜𝑚𝑝,𝑖𝑛
= (

𝑃𝑐𝑜𝑛𝑑

𝑃𝑒𝑣𝑎𝑝
)

𝛾−1

𝛾
                                          (6.52) 

 The isentropic efficiency of the compressor is calculated with the following equation, 



 𝜂𝑖𝑠 = 1.0 − 0.004
𝑃𝑐𝑜𝑛𝑑

𝑃𝑒𝑣𝑎𝑝
                                         (6.53) 

 Electrical and mechanical efficiencies of the compressor are respectively taken as 0.95 

and 0.9. Work consumption of the compressor is calculated as, 

 𝑊𝑐𝑜𝑚𝑝 = �̇�𝑐𝑜𝑚𝑝(ℎ𝑐𝑜𝑚𝑝,𝑜𝑢𝑡 − ℎ𝑐𝑜𝑚𝑝,𝑖𝑛)                                       (6.54) 

 Finally exergy destruction of the compressior is calculated as follows, 

 �̇�𝑑𝑒𝑠𝑡,𝑐𝑜𝑚𝑝 = −𝑇𝐻�̇�𝑐𝑜𝑚𝑝(𝑠𝑐𝑜𝑚𝑝,𝑖𝑛 − 𝑠𝑐𝑜𝑚𝑝,𝑜𝑢𝑡)                           (6.55) 

 The photo of a compressor is given in Figure 6.9. 

 

Figure 6.9. Photo of a compressor (Rasmussen and Alleyne, 2006)  

 The refrigerant mass flow rate in the EEV side of the cycle is determined as follows, 

 �̇�𝒗𝒂𝒍𝒗 = 𝑨𝒗𝒂𝒍𝒗𝑪𝒗𝒂𝒍𝒗√(𝑷𝒗𝒂𝒍𝒗,𝒊𝒏 − 𝑷𝒗𝒂𝒍𝒗,𝒐𝒖𝒕)                                       

(6.66) 

 Discharge coefficient of the EEV is calculated as follows (Jain, 2013), 

 𝑪𝒗𝒂𝒍𝒗 = (−𝟗. 𝟓𝟗𝟖𝟒𝒙𝟏𝟎−𝟔) + (𝟐. 𝟎𝟒𝟖𝟏𝒙𝟏𝟎−𝟔)𝒙𝒂 + (𝟓. 𝟒𝟏𝟎𝟔𝒙𝟏𝟎−𝟔)𝒙(𝑷𝒐𝒖𝒕 −

𝑷𝒊𝒏) +             (−𝟕. 𝟒𝟗𝟎𝟗𝒙𝟏𝟎−𝟏𝟎)𝒙𝒂𝒙(𝑷𝒐𝒖𝒕 −  𝑷𝒊𝒏) + (−𝟑. 𝟕𝟕𝟕𝟓𝒙𝟏𝟎−𝟖)𝒙𝒂𝟐    

 (6.67) 

 The rate of exergy destruction in the EEV is determined as follows, 

 �̇�𝒅𝒆𝒔𝒕,𝒗𝒂𝒍𝒗 = −𝑻𝑯�̇�𝒗𝒂𝒍𝒗(𝒔𝒗𝒂𝒍𝒗,𝒊𝒏 − 𝒔𝒗𝒂𝒍𝒗,𝒐𝒖𝒕)                            

(6.68) 

 Finally, photo of an EEV is depicted in Figure 6.10. The MB model of the evaporator 



consists of three seperate regions: the super-heated region, two-phase region and sub-cooled 

region. The evaporator and condenser models are given in Figure 6.11. 

 

 

Figure 6.10. Photo of an EEV (Rasmussen and Alleyne, 2006) 

 



 

Figure 6.11. The MB models of the evaporator and condenser 

 The design properties of the condenser is taken as follows, the tube length is 19 m, the 

outer and inner tube diameters are taken respectively as 18 mm and 12 mm and wall thickness 

of the tube is 2 mm. The walls of the condenser is considered to be made of steel and Shah 

(1984) correlation is utilized for the modeling of the condensation process and Fauske (1964) 

correlation is used for the calculation of the mean void fraction. The equations that model the 

conservation of mass for the each region in the evaporator as follows, 

 (𝝆𝒄𝒐𝒏𝒅,𝟏 − 𝝆𝒗𝒂)𝑨�̇�𝒄𝒐𝒏𝒅,𝟏 + [
𝜹𝝆𝒄𝒐𝒏𝒅,𝟏

𝜹𝑷𝒄𝒐𝒏𝒅
|
𝒉𝒄𝒐𝒏𝒅,𝟏

+
𝟏

𝟐
(

𝜹𝝆𝒄𝒐𝒏𝒅,𝟏

𝜹𝒉𝒄𝒐𝒏𝒅,𝟏
|
𝑷𝒄

(
𝒅𝒉𝒗𝒂𝒑

𝒅𝑷𝒄𝒐𝒏𝒅
))]𝑨𝑳𝒄𝒐𝒏𝒅,𝟏�̇�𝒄𝒐𝒏𝒅 +

              
𝟏

𝟐
(

𝜹𝝆𝒄𝒐𝒏𝒅,𝟏

𝜹𝒉𝒄𝒐𝒏𝒅,𝟏
|
𝑷𝒄

)𝑨𝑳𝟏�̇�𝒄𝒐𝒏𝒅 = �̇�𝒄𝒐𝒎𝒑 − �̇�𝒊𝒏𝒕𝒆,𝒄𝒐𝒏𝒅𝟏𝟐
                                      (6.69) 

 (𝝆𝒗𝒂𝒑 − 𝝆𝒍𝒊𝒒)𝑨�̇�𝒄𝒐𝒏𝒅,𝟏 + (𝝆𝒗𝒂𝒑 − 𝝆𝒍𝒊𝒒)𝜸𝑨�̇�𝒄𝒐𝒏𝒅,𝟐 + (
𝒅𝝆𝒍𝒊𝒒

𝒅𝑷𝒄𝒐𝒏𝒅
(𝟏 − 𝜸) +

              
𝒅𝝆𝒗𝒂𝒑

𝒅𝑷𝒄𝒐𝒏𝒅
𝜸)𝑨𝑳𝒄𝒐𝒏𝒅,𝟐�̇�𝒄𝒐𝒏𝒅 = �̇�𝒊𝒏𝒕𝒆,𝒄𝒐𝒏𝒅𝟏𝟐

− �̇�𝒊𝒏𝒕𝒆,𝒄𝒐𝒏𝒅𝟐𝟑
                         (6.70) 

 (𝝆𝒍𝒊𝒒 − 𝝆𝒄𝒐𝒏𝒅𝟑
)𝑨(�̇�𝒄𝒐𝒏𝒅,𝟏 + �̇�𝒄𝒐𝒏𝒅,𝟐) + [

𝜹𝝆𝒄𝒐𝒏𝒅,𝟑

𝜹𝑷𝒄𝒐𝒏𝒅
|
𝒉𝒄𝒐𝒏𝒅,𝟑

+

             
𝟏

𝟐
(

𝜹𝝆𝒄𝒐𝒏𝒅,𝟑

𝜹𝒉𝒄𝒐𝒏𝒅,𝟑
|
𝑷𝒄

(
𝒅𝒉𝒍𝒊𝒒

𝒅𝑷𝒄𝒐𝒏𝒅
))] 𝑨𝑳𝒄𝒐𝒏𝒅,𝟑�̇�𝒄𝒐𝒏𝒅 +

𝟏

𝟐
(

𝜹𝝆𝒄𝒐𝒏𝒅,𝟑

𝜹𝒉𝒄𝒐𝒏𝒅,𝟑
|
𝑷𝒄

)𝑨𝑳𝟑�̇�𝒄𝒐𝒏𝒅 = �̇�𝒊𝒏𝒕𝒆,𝒄𝒐𝒏𝒅𝟐𝟑
−

            �̇�𝒗𝒂𝒍𝒗                                                       (6.71) 

 Energy conservation equations for the each region are as follows, 

 [
𝜹𝝆𝒄𝒐𝒏𝒅,𝟏

𝜹𝑷𝒄𝒐𝒏𝒅
|
𝒉𝒄𝒐𝒏𝒅,𝟏

+
𝟏

𝟐
(

𝜹𝝆𝒄𝒐𝒏𝒅,𝟏

𝜹𝒉𝒄𝒐𝒏𝒅,𝟏
|
𝑷𝒄

(
𝒅𝒉𝒗𝒂𝒑

𝒅𝑷𝒄𝒐𝒏𝒅
))𝒉𝒄𝒐𝒏𝒅,𝟏 +

𝟏

𝟐

𝒅𝒉𝒗𝒂𝒑

𝒅𝑷𝒄𝒐𝒏𝒅
𝝆𝒄𝒐𝒏𝒅,𝟏 −

              𝟏] 𝑨𝑳𝒄𝒐𝒏𝒅,𝟏�̇�𝒄𝒐𝒏𝒅 + [
𝟏

𝟐
(

𝜹𝝆𝒄𝒐𝒏𝒅,𝟏

𝜹𝒉𝒄𝒐𝒏𝒅,𝟏
|
𝑷𝒄

)𝒉𝒄𝒐𝒏𝒅,𝟏 +
𝟏

𝟐
𝝆𝒄𝒐𝒏𝒅,𝟏]𝑨𝑳𝒄𝒐𝒏𝒅,𝟏�̇�𝒄𝒐𝒏𝒅 +

              (𝝆𝒄𝒐𝒏𝒅,𝟏𝒉𝒄𝒐𝒏𝒅,𝟏 − 𝝆𝒗𝒂𝒑𝒉𝒗𝒂𝒑)𝑨�̇�𝒄𝒐𝒏𝒅,𝟏 = �̇�𝒄𝒐𝒎𝒑𝒉𝒄𝒐𝒎𝒑 − �̇�𝒊𝒏𝒕𝒆,𝒄𝒐𝒏𝒅𝟏𝟐𝒉𝒗𝒂𝒑 +



              𝜶𝒄𝒐𝒏𝒅𝑨𝒄𝒐𝒏𝒅,𝟏
𝑳𝒄𝒐𝒏𝒅,𝟏

𝑳𝒕𝒐𝒕
(𝑻𝒘𝒂𝒍𝒍,𝒄𝒐𝒏𝒅𝟏 − 𝑻𝒓𝒆𝒇,𝒄𝒐𝒏𝒅𝟏)                                                        (6.72) 

 (𝝆𝒗𝒂𝒑𝒉𝒗𝒂𝒑 − 𝝆𝒍𝒊𝒒𝒉𝒍𝒊𝒒)𝑨�̇�𝒄𝒐𝒏𝒅,𝟏 + (𝝆𝒗𝒂𝒑 − 𝝆𝒍𝒊𝒒)𝜸𝑨�̇�𝒄𝒐𝒏𝒅,𝟐 + (
𝒅(𝝆𝒍𝒊𝒒𝒉𝒍𝒊𝒒)

𝒅𝑷𝒄𝒐𝒏𝒅
(𝟏 − 𝜸) +

              
𝒅(𝝆𝒗𝒂𝒑𝒉𝒗𝒂𝒑)

𝒅𝑷𝒄𝒐𝒏𝒅
𝜸 − 𝟏)𝑨𝑳𝒄𝒐𝒏𝒅,𝟐�̇�𝒄𝒐𝒏𝒅 = �̇�𝒊𝒏𝒕𝒆,𝒄𝒐𝒏𝒅𝟏𝟐

𝒉𝒗𝒂𝒑 − �̇�𝒊𝒏𝒕𝒆,𝒄𝒐𝒏𝒅𝟏𝟐
𝒉𝒍𝒊𝒒 +

             𝜶𝒄𝒐𝒏𝒅𝑨𝒄𝒐𝒏𝒅,𝟐
𝑳𝒄𝒐𝒏𝒅,𝟐

𝑳𝒕𝒐𝒕
(𝑻𝒘𝒂𝒍𝒍,𝒄𝒐𝒏𝒅𝟐 − 𝑻𝒓𝒆𝒇,𝒄𝒐𝒏𝒅𝟐)     (6.73) 

 [
𝜹𝝆𝒄𝒐𝒏𝒅,𝟑

𝜹𝑷𝒄𝒐𝒏𝒅
|
𝒉𝒄𝒐𝒏𝒅,𝟑

+
𝟏

𝟐
(

𝜹𝝆𝒄𝒐𝒏𝒅,𝟑

𝜹𝒉𝒄𝒐𝒏𝒅,𝟑
|
𝑷𝒄

(
𝒅𝒉𝒍𝒊𝒒

𝒅𝑷𝒄𝒐𝒏𝒅
))𝒉𝒄𝒐𝒏𝒅,𝟑 +

𝟏

𝟐

𝒅𝒉𝒍𝒊𝒒

𝒅𝑷𝒄𝒐𝒏𝒅
𝝆𝒄𝒐𝒏𝒅,𝟑 −

              𝟏] 𝑨𝑳𝒄𝒐𝒏𝒅,𝟑�̇�𝒄𝒐𝒏𝒅 + [
𝟏

𝟐
(

𝜹𝝆𝒄𝒐𝒏𝒅,𝟑

𝜹𝒉𝒄𝒐𝒏𝒅,𝟑
|
𝑷𝒄

)𝒉𝒄𝒐𝒏𝒅,𝟑 +
𝟏

𝟐
𝝆𝒄𝒐𝒏𝒅,𝟑]𝑨𝑳𝒄𝒐𝒏𝒅,𝟑�̇�𝒄𝒐𝒏𝒅 +

              (𝝆𝒍𝒊𝒒𝒉𝒍𝒊𝒒 − 𝝆𝒄𝒐𝒏𝒅,𝟑𝒉𝒄𝒐𝒏𝒅,𝟑)𝑨(�̇�𝒄𝒐𝒏𝒅,𝟏 + �̇�𝒄𝒐𝒏𝒅,𝟐) = �̇�𝒊𝒏𝒕𝒆,𝒄𝒐𝒏𝒅𝟐𝟑𝒉𝒍𝒊𝒒 −

               �̇�𝒗𝒂𝒍𝒗𝒉𝒗𝒂𝒍𝒗 + 𝜶𝒄𝒐𝒏𝒅𝑨𝒄𝒐𝒏𝒅,𝟑
𝑳𝒄𝒐𝒏𝒅,𝟑

𝑳𝒕𝒐𝒕
(𝑻𝒘𝒂𝒍𝒍,𝒄𝒐𝒏𝒅𝟑 − 𝑻𝒓𝒆𝒇,𝒄𝒐𝒏𝒅𝟑)                         (6.74) 

 Conservation of energy equations for the wall that contants with the each refrigerant 

phase are as follows, 

 𝒎𝒘𝑪𝒑,𝒘�̇�𝒘,𝒄𝒐𝒏𝒅𝟏 + 𝒎𝒘𝑪𝒑,𝒘 (
𝑻𝒘,𝒄𝒐𝒏𝒅𝟏−𝑻𝒘,𝒄𝒐𝒏𝒅𝟐

𝑳𝒄𝒐𝒏𝒅𝟏
) = 𝜶𝒄𝒐𝒏𝒅𝑨𝒄𝒐𝒏𝒅,𝟏(𝑻𝒓𝒆𝒇,𝒄𝒐𝒏𝒅𝟏 −

             𝑻𝒘,𝒄𝒐𝒏𝒅𝟏) + 𝜶𝒐𝒖𝒕𝑨𝒐𝒖𝒕(𝑻𝑯 − 𝑻𝒘,𝒄𝒐𝒏𝒅𝟏)                                                             (6.75)

 𝒎𝒘𝑪𝒑,𝒘�̇�𝒘,𝒄𝒐𝒏𝒅𝟐 = 𝜶𝒄𝒐𝒏𝒅𝑨𝒄𝒐𝒏𝒅,𝟐(𝑻𝒓𝒆𝒇,𝒄𝒐𝒏𝒅𝟐 − 𝑻𝒘,𝒄𝒐𝒏𝒅𝟐) + 𝜶𝒐𝒖𝒕𝑨𝒐𝒖𝒕(𝑻𝑯 −

              𝑻𝒘,𝒄𝒐𝒏𝒅𝟐)                                           (6.76) 

 𝒎𝒘𝑪𝒑,𝒘�̇�𝒘,𝒄𝒐𝒏𝒅𝟑 + 𝒎𝒘𝑪𝒑,𝒘 (
𝑻𝒘,𝒄𝒐𝒏𝒅𝟐−𝑻𝒘,𝒄𝒐𝒏𝒅𝟑

𝑳𝒄𝒐𝒏𝒅𝟑
) (�̇�𝒄𝒐𝒏𝒅,𝟏 + �̇�𝒄𝒐𝒏𝒅,𝟐) =

              𝜶𝒄𝒐𝒏𝒅𝑨𝒄𝒐𝒏𝒅,𝟑(𝑻𝒓𝒆𝒇,𝒄𝒐𝒏𝒅𝟑 − 𝑻𝒘,𝒄𝒐𝒏𝒅𝟑) + 𝜶𝒐𝒖𝒕𝑨𝒐𝒖𝒕(𝑻𝑯 − 𝑻𝒘,𝒄𝒐𝒏𝒅𝟑)                         

(6.77) 

 Total exergy destruction of the condenser is calculated as, 

 �̇�𝒅𝒆𝒔𝒕,𝒄𝒐𝒏𝒅 = �̇�𝒗𝒂𝒍𝒗(𝒉𝒄𝒐𝒏𝒅 − 𝑻𝑯𝒔𝒄𝒐𝒏𝒅,𝒗𝒂𝒍𝒗) − �̇�𝒄𝒐𝒎𝒑(𝒉𝒄𝒐𝒏𝒅 − 𝑻𝑯𝒔𝒄𝒐𝒏𝒅,𝒄𝒐𝒎𝒑) +

             �̇�𝒄𝒐𝒏𝒅,𝒔𝒆𝒄(𝒉𝒄𝒐𝒏𝒅,𝒔𝒆𝒄 − 𝑻𝑯𝒔𝒄𝒐𝒏𝒅,𝒔𝒆𝒄,𝒗𝒂𝒍𝒗)                                                  (6.78) 

 The above given equations can be grouped and solved as the following matrix equation 

form, 

 

[
 
 
 
 
 
 
𝒁𝟏𝟏 𝟎 𝒁𝟏𝟑 𝟎 𝟎 𝟎 𝟎
𝒁𝟐𝟏 𝒁𝟐𝟐 𝒁𝟐𝟑 𝒁𝟐𝟒 𝟎 𝟎 𝟎
𝒁𝟑𝟏 𝒁𝟑𝟐 𝒁𝟑𝟑 𝒁𝟑𝟒 𝟎 𝟎 𝟎
𝒁𝟒𝟏 𝒁𝟒𝟐 𝒁𝟒𝟑 𝒁𝟒𝟒 𝟎 𝟎 𝟎
𝒁𝟓𝟏 𝟎 𝟎 𝟎 𝒁𝟓𝟓 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝒁𝟔𝟔 𝟎

𝒁𝟕𝟏 𝒁𝟕𝟐 𝟎 𝟎 𝟎 𝟎 𝒁𝟕𝟕]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
�̇�𝒄𝒐𝒏𝒅𝟏

�̇�𝒄𝒐𝒏𝒅𝟐

�̇�𝒄𝒐𝒏𝒅

�̇�𝒐𝒖𝒕

�̇�𝒘𝒂𝒍𝒍,𝟏

�̇�𝒘𝒂𝒍𝒍,𝟐

�̇�𝒘𝒂𝒍𝒍,𝟑]
 
 
 
 
 
 
 
 

=



             

[
 
 
 
 
 
 
 

�̇�𝒊𝒏(𝒉𝒊𝒏 − 𝒉𝒗𝒂𝒍) + 𝒒𝒊𝒏𝟏

�̇�𝒊𝒏𝒉𝒗𝒂𝒍 − �̇�𝒐𝒖𝒕𝒉𝒍𝒊𝒒 + 𝒒𝒊𝒏𝟐

�̇�𝒐𝒖𝒕(𝒉𝒍𝒊𝒒 − 𝒉𝒐𝒖𝒕) + 𝒒𝒊𝒏𝟑

�̇�𝒊𝒏 − �̇�𝒐𝒖𝒕

𝒒𝒐𝒖𝒕𝟏 − 𝒒𝒊𝒏𝟏

𝒒𝒐𝒖𝒕𝟐 − 𝒒𝒊𝒏𝟐

𝒒𝒐𝒖𝒕𝟑 − 𝒒𝒊𝒏𝟑 ]
 
 
 
 
 
 
 

                                                                         

(6.79) 

 The Z matrix elements are depicted in Figure 6.12 and Figure 6.13. 

 

 

Figure 6.12. Z matrix elements (Rasmussen and Alleyne, 2006) 



 

Figure 6.13. Z matrix elements (Rasmussen and Alleyne, 2006)  

 

 The evaporator has two refrigerant phases: two-phase and super-heated regions. The 

design properties of the evaporator are considered as follows, the tube length is 13 m, the outer 

and inner tube diameters are taken respectively as 18 mm and 12 mm and wall thickness of the 

tube is 2 mm. The wall of the evaporator is considered to be made of steel. The evaporation 

process is modeled with Gungor and Winterton (1986) correlation and the mean void fraction 

is modeled with Fauske (1964) correlation. The conservation of mass equations of the 

refrigerant are as follows,  

 (𝝆𝒍𝒊𝒒 − 𝝆𝒗𝒂𝒑)𝑨�̇�𝒆𝒗𝒂𝒑𝟏(𝟏 − 𝜸) + (
𝒅𝝆𝒍𝒊𝒒

𝒅𝑷𝒆𝒗𝒂𝒑
(𝟏 − 𝜸) +

𝒅𝝆𝒗𝒂𝒑

𝒅𝑷𝒆𝒗𝒂𝒑
𝜸)𝑨𝑳𝒆𝒗𝒂𝒑𝟏�̇�𝒆𝒗𝒂𝒑 =

�̇�𝒗𝒂𝒍𝒗 −             �̇�𝒊𝒏𝒕𝒆,𝒆𝒗𝒂𝒑𝟏𝟐
                                                                                                 

(6.80) 

 (𝝆𝒗𝒂𝒑 − 𝝆𝒆𝒗𝒂𝒑,𝟐)𝑨�̇�𝒆𝒗𝒂𝒑𝟏 + [
𝜹𝝆𝒆𝒗𝒂𝒑𝟐

𝜹𝑷𝒆𝒗𝒂𝒑
|
𝒉𝒆𝒗𝒂𝒑,𝟐

+

              
𝟏

𝟐
(

𝜹𝝆𝒆𝒗𝒂𝒑𝟐

𝜹𝒉𝒆𝒗𝒂𝒑
|
𝑷𝒆𝒗𝒂𝒑

(
𝒅𝒉𝒗𝒂𝒑

𝒅𝑷𝒆𝒗𝒂𝒑
))]𝑨𝑳𝒆𝒗𝒂𝒑𝟐�̇�𝒆𝒗𝒂𝒑 +

𝟏

𝟐
(

𝜹𝝆𝒆𝒗𝒂𝒑𝟐

𝜹𝒉𝒆𝒗𝒂𝒑𝟐
|
𝑷𝒆𝒗𝒂𝒑

)𝑨𝑳𝟐�̇�𝒆𝒗𝒂𝒑 =

             �̇�𝒊𝒏𝒕𝒆,𝒆𝒗𝒂𝒑𝟏𝟐
− �̇�𝒄𝒐𝒎𝒑                                                    (6.81) 

 The conservation of energy equations of the each refrigerant phase in the evaporator 

are, 

 (𝝆𝒍𝒊𝒒𝒉𝒍𝒊𝒒 − 𝝆𝒗𝒂𝒑𝒉𝒗𝒂𝒑)𝑨�̇�𝒆𝒗𝒂𝒑𝟏(𝟏 − 𝜸) + (
𝒅(𝝆𝒍𝒊𝒒𝒉𝒍𝒊𝒒)

𝒅𝑷𝒆𝒗𝒂𝒑
(𝟏 − 𝜸) +

𝒅(𝝆𝒗𝒂𝒑𝒉𝒗𝒂𝒑)

𝒅𝑷𝒆𝒗𝒂𝒑
𝜸 −

             𝟏)𝑨𝑳𝒆𝒗𝒂𝒑𝟐�̇�𝒆𝒗𝒂𝒑𝟐 = �̇�𝒗𝒂𝒍𝒗𝒉𝒗𝒂𝒍𝒗 − �̇�𝒊𝒏𝒕𝒆,𝒆𝒗𝒂𝒑𝟏𝟐
𝒉𝒊𝒏𝒕,𝒆𝒗𝒂𝒑𝟏𝟐

+



             𝜶𝒆𝒗𝒂𝒑𝑨𝒆𝒗𝒂𝒑𝟐
𝑳𝒆𝒗𝒂𝒑𝟏

𝑳𝒕𝒐𝒕
(𝑻𝒘𝒂𝒍𝒍,𝒆𝒗𝒂𝒑𝟏 −  𝑻𝒓𝒆𝒇,𝒆𝒗𝒂𝒑𝟏)                           (6.82) 

  [
𝜹𝝆𝒆𝒗𝒂𝒑𝟐

𝜹𝑷𝒆𝒗𝒂𝒑
|
𝒉𝒆𝒗𝒂𝒑𝟏

+
𝟏

𝟐
(

𝜹𝝆𝒆𝒗𝒂𝒑𝟐

𝜹𝒉𝒆𝒗𝒂𝒑𝟐
|
𝑷𝒆𝒗𝒂𝒑

(
𝒅𝒉𝒗𝒂𝒑

𝒅𝑷𝒆𝒗𝒂𝒑
))𝒉𝒆𝒗𝒂𝒑𝟐 +

𝟏

𝟐

𝒅𝒉𝒗𝒂𝒑

𝒅𝑷𝒆𝒗𝒂𝒑
𝝆𝒆𝒗𝒂𝒑𝟐 −

              𝟏] 𝑨𝑳𝒆𝒗𝒂𝒑𝟐�̇�𝒆𝒗𝒂𝒑 + [
𝟏

𝟐
(

𝜹𝝆𝒆𝒗𝒂𝒑𝟐

𝜹𝒉𝒆𝒗𝒂𝒑𝟐
|
𝑷𝒆𝒗𝒂𝒑

)𝒉𝒆𝒗𝒂𝒑𝟐 +
𝟏

𝟐
𝝆𝒆𝒗𝒂𝒑𝟐] 𝑨𝑳𝒆𝒗𝒂𝒑𝟐�̇�𝒆𝒗𝒂𝒑 +

              (𝝆𝒗𝒂𝒑𝒉𝒗𝒂𝒑 − 𝝆𝒆𝒗𝒂𝒑𝟐𝒉𝒆𝒗𝒂𝒑𝟐)𝑨�̇�𝒆𝒗𝒂𝒑𝟏 = �̇�𝒊𝒏𝒕,𝒆𝒗𝒂𝒑𝟏𝟐
𝒉𝒊𝒏𝒕,𝒆𝒗𝒂𝒑𝟏𝟐

−

               �̇�𝒄𝒐𝒎𝒑𝒉𝒄𝒐𝒎𝒑 + 𝜶𝒆𝒗𝒂𝒑𝑨𝒆𝒗𝒂𝒑𝟐
𝑳𝒆𝒗𝒂𝒑𝟐

𝑳𝒕𝒐𝒕
(𝑻𝒘𝒂𝒍𝒍,𝒆𝒗𝒂𝒑𝟐 − 𝑻𝒓𝒆𝒇,𝒆𝒗𝒂𝒑𝟐)                         (6.83) 

 The conversation of the tube wall energy formulas are, 

 𝒎𝒘𝑪𝒑,𝒘�̇�𝒘,𝒆𝒗𝒂𝒑𝟏 = 𝜶𝒆𝒗𝒂𝒑𝑨𝒆𝒗𝒂𝒑𝟏(𝑻𝒓𝒆𝒇,𝒆𝒗𝒂𝒑𝟏 − 𝑻𝒘,𝒆𝒗𝒂𝒑𝟏) + 𝜶𝒐𝒖𝒕𝑨𝒐𝒖𝒕(𝑻𝑳 −

              𝑻𝒘,𝒆𝒗𝒂𝒑𝟏)                                (6.84) 

 𝒎𝒘𝑪𝒑,𝒘�̇�𝒘,𝒆𝒗𝒂𝒑𝟐 − 𝒎𝒘𝑪𝒑,𝒘�̇�𝒆𝒗𝒂𝒑𝟏 (
𝑻𝒘,𝒆𝒗𝒂𝒑𝟐−𝑻𝒘,𝒆𝒗𝒂𝒑𝟏

𝑳𝒆𝒗𝒂𝒑𝟐
) =

              𝜶𝒆𝒗𝒂𝒑𝑨𝒆𝒗𝒂𝒑𝟐(𝑻𝒓𝒆𝒇,𝒆𝒗𝒂𝒑𝟐 − 𝑻𝒘,𝒆𝒗𝒂𝒑𝟐) + 𝜶𝒐𝒖𝒕𝑨𝒐𝒖𝒕(𝑻𝑳 − 𝑻𝒘,𝒆𝒗𝒂𝒑𝟐)                         

(6.85) 

 The rate of exergy destruction in the evaporator is calculated as, 

 �̇�𝒅𝒆𝒔𝒕,𝒆𝒗𝒂𝒑 = �̇�𝒄𝒐𝒎𝒑(𝒉𝒆𝒗𝒂𝒑 − 𝑻𝑯𝒔𝒆𝒗𝒂𝒑,𝒄𝒐𝒎𝒑) − �̇�𝒄𝒐𝒎𝒑(𝒉𝒆𝒗𝒂𝒑 − 𝑻𝑯𝒔𝒆𝒗𝒂𝒑,𝒗𝒂𝒍𝒗) +

             �̇�𝒆𝒗𝒂𝒑,𝒔𝒆𝒄(𝒉𝒆𝒗𝒂𝒑,𝒔𝒆𝒄 − 𝑻𝑯𝒔𝒆𝒗𝒂𝒑,𝒔𝒆𝒄,𝒄𝒐𝒎𝒑)                                                             (6.86) 

 The above given equations can be grouped into the matrix form as follows, 

 

[
 
 
 
 
𝒁𝟏𝟏 𝟎 𝒁𝟏𝟑 𝟎 𝟎 𝟎 𝟎
𝒁𝟐𝟏 𝒁𝟐𝟐 𝒁𝟐𝟑 𝒁𝟐𝟒 𝟎 𝟎 𝟎
𝒁𝟑𝟏 𝒁𝟑𝟐 𝒁𝟑𝟑 𝒁𝟑𝟒 𝟎 𝟎 𝟎
𝒁𝟒𝟏 𝒁𝟒𝟐 𝒁𝟒𝟑 𝒁𝟒𝟒 𝟎 𝟎 𝟎
𝒁𝟓𝟏 𝟎 𝟎 𝟎 𝒁𝟓𝟓 𝟎 𝟎]

 
 
 
 

[
 
 
 
 
 
�̇�𝒆𝒗𝒂𝒑𝟏

�̇�𝒆𝒗𝒂𝒑

�̇�𝒐𝒖𝒕

�̇�𝒘𝒂𝒍𝒍,𝟏

�̇�𝒘𝒂𝒍𝒍,𝟐]
 
 
 
 
 

=

[
 
 
 
 

�̇�𝒊𝒏(𝒉𝒊𝒏 − 𝒉𝒗𝒂𝒍) + 𝒒𝒊𝒏𝟏

�̇�𝒐𝒖𝒕(𝒉𝒍𝒊𝒒 − 𝒉𝒐𝒖𝒕) + 𝒒𝒊𝒏𝟑

�̇�𝒊𝒏 − �̇�𝒐𝒖𝒕

𝒒𝒐𝒖𝒕𝟏 − 𝒒𝒊𝒏𝟏

𝒒𝒐𝒖𝒕𝟐 − 𝒒𝒊𝒏𝟐 ]
 
 
 
 

       

(6.87)                                                

 The elements of the matrix Z are given in Figure 6.14. The cycle cooling load is 

determined as, 

 �̇�𝒄𝒐𝒐𝒍 = �̇�𝒄𝒐𝒎𝒑𝒉𝒆𝒗𝒂𝒑,𝒄𝒐𝒎𝒑 − �̇�𝒗𝒂𝒍𝒗𝒉𝒆𝒗𝒂𝒑,𝒗𝒂𝒍𝒗                                      (6.88) 

 The total exergy destruction rate of the cycle is calculated as follows, 

 �̇�𝒅𝒆𝒔𝒕,𝒕𝒐𝒕𝒂𝒍 = �̇�𝒅𝒆𝒔𝒕,𝒄𝒐𝒎𝒑 + �̇�𝒅𝒆𝒔𝒕,𝒗𝒂𝒍𝒗 + �̇�𝒅𝒆𝒔𝒕,𝒆𝒗𝒂𝒑 + �̇�𝒅𝒆𝒔𝒕,𝒄𝒐𝒏𝒅                         (6.89) 

  



 

Figure 6.14. Z matrix elements (Rasmussen and Alleyne, 2006)   

  

 The COP and second law efficiency of the cycle are calculated as, 

 𝑪𝑶𝑷 =
�̇�𝒄𝒐𝒐𝒍

�̇�𝒄𝒐𝒎𝒑
                                                                 (6.90) 

 𝜼𝑰𝑰 = 𝟏 −
�̇�𝒅𝒆𝒔𝒕,𝒕𝒐𝒕𝒂𝒍

�̇�𝒄𝒐𝒎𝒑
                               (6.91) 

 Aspen software (Aspen, 2013) is utilized for the verification of the cycle model 

described above. The time-varying data of the state variables with respect to the randomly-

generated inputs are compared with that of the Aspen Plus Dynamics. Aspen Plus is a market-

leading software package utilized in the industry and chemical plants that model the 

thermodynamic processes. Same as the MB model, R134a is used for the primary fluid and 

water is utilized as the secondary fluid. The desing properties of the components that are used 

in the VCC for the model verification is as follows, the condenser tube length is 15 m, the 

outer and inner tube diameters are taken respectively as 18 mm and 12 mm and wall thickness 

of the tube is 2 mm. The evaporator tube length is 9 m, the outer and inner tube diameters are 

taken respectively as 18 mm and 12 mm and wall thickness of the tube is 2 mm. Both of the 

heat exchangers are considered to be made of steel. And the high-temperature and low-



temperature reservoirs are respectively taken as 27°C and 7°C. Both the MB model system and 

Aspen system are perturbed with randomly-generated signals over a period of time.The MB 

system is simulated in the Python environment. Randomly-generated perturbation signals are 

shown in Figure 6.15. And the comparison of the three selected state variables as a result of 

the perturbation signals are given in Figure 6.16. The selected state variables are the 

evaporator pressure, evaporator outlet enthalpy and compressor outlet entropy. Figure 6.16 

shows that the results are fairly similar. The highest variance between the two models occur in 

the evaporator pressure by 1.7%. 

 

 

Figure 6.15. Perturbation signals to the systems 

 

 

Figure 6.16. Model verification results of the state variables 

 A Model Predictive Controller (MPC) type of controller is utilized to control the 

system. As described and discussed in Chapter 5, MPC is a class of optimization-based control 



algorithms that are widely used in the industry, especially in the chemical processes. MPC 

algorithms are appliciable to both linear and non-linear systems. It has been realized that if the 

MPC algorithm is applied to a non-linear system, the performance and accuracy of the 

controller is improved compared to that of linear systems. Selection of the model type is a 

crucial part of the MPC algorithm. As discussed in Chapter 5, different kind of models can be 

utilized as the model in the MPC algorithm. The artificial neural network is used as the model 

in this case study. The neural networks has some advantages compared to other non-linear 

models. Some of the advantages of the neural networks are: they have less parameters to be 

tuned compared to the other models, they form a direct relationship between the inputs and 

outputs, they are universal approximators. The Neural Network Predictive Controller (NNPC) 

is utilized in many works in the literature and performed well in all control scenarios.  

 

 The neural network model is utilized for the prediction of the future states in the 

NNPC. An objective function is formed and solved with an optimization algorithm for the 

each time step to determine the future control signals. The future control signals optimally 

satisfy the performance criterion while ensuring the trajectory tracking of the system. The 

objective function can be formulated as follows, 

 𝑱(𝒌) = ∑ [𝝉𝒚𝒓𝒆𝒇(𝒌 + 𝒂) − 𝒚(𝒌 + 𝒂)]
𝟐
+ 𝝋∑ [∆𝒖(𝒌 + 𝒂 − 𝟏)]𝟐𝑵𝒖

𝒂=𝟏
𝑵𝒎𝒂𝒙𝒊𝒎𝒖𝒎
𝒂=𝑵𝒎𝒊𝒏𝒊𝒎𝒖𝒎

     

(6.92) 

 The objective function given above is subject to following constraints, 

 𝒖𝒎𝒊𝒏𝒊𝒎𝒖𝒎 ≤ 𝒖 ≤ 𝒖𝒎𝒂𝒙𝒊𝒎𝒖𝒎                                                               (6.93) 

 ∆𝒖𝒎𝒊𝒏𝒊𝒎𝒖𝒎 ≤ ∆𝒖 ≤ ∆𝒖𝒎𝒂𝒙𝒊𝒎𝒖𝒎                             (6.94) 

 𝒚𝒎𝒊𝒏𝒊𝒎𝒖𝒎 ≤ 𝒚 ≤ 𝒚𝒎𝒂𝒙𝒊𝒎𝒖𝒎                               (6.95) 

 ∆𝒚𝒎𝒊𝒏𝒊𝒎𝒖𝒎 ≤ ∆𝒚 ≤ ∆𝒚𝒎𝒂𝒙𝒊𝒎𝒖𝒎                                                   (6.96) 

 There are four different controllers that are considered for the testing of the overall 

controller performance. They are the cooling load case, first law efficiency, entropy generation 

and second law efficiency controllers. The objective of the cooling load controller is to only 

track the desired cooling load trajectory which also is used as the main benchmark controller. 

The other three controllers have specific objectives other than the common main objective 

which is the cooling load trajectory tracking. All of the controllers have been named after their 

specific performance objectives. For example, the objective of the first law efficiency 

controller is to optimize the work consumption of the controller, thus maximizing the COP of 

the cycle while ensuring the stable cooling load trajectory tracking of the cycle. The four 

controllers can be formalized as follows, 

𝑱𝑽𝑪𝑪,𝒄𝒐 = ‖�̇�𝒅𝒆𝒔 − �̇�𝒂𝒄𝒉𝒊‖𝟐
                                (6.97) 



𝑱𝑽𝑪𝑪,𝒇𝒍 = ‖�̇�𝒅𝒆𝒔 − �̇�𝒂𝒄𝒉𝒊‖𝟐
+ 𝝋∑ �̇�𝒄𝒐𝒎𝒑(𝒂)

𝑵𝒑𝒓𝒆𝒅

𝒂=𝟏
                            (6.98) 

𝑱𝑽𝑪𝑪,𝒆𝒈 = ‖�̇�𝒅𝒆𝒔 − �̇�𝒂𝒄𝒉𝒊‖𝟐
+ 𝝋∑ �̇�𝒄𝒐𝒎𝒑(𝒂)

𝑵𝒑𝒓𝒆𝒅

𝒂=𝟏
                            (6.99) 

𝑱𝑽𝑪𝑪,𝒔𝒇 = ‖�̇�𝒅𝒆𝒔 − �̇�𝒂𝒄𝒉𝒊‖𝟐
− 𝝋∑ 𝜼𝑰𝑰(𝒂)

𝑵𝒑𝒓𝒆𝒅

𝒂=𝟏
                          (6.100) 

The Whale Optimization Algorithm (WOA) is utilized for the solution of the objective 

function of the MPC controller at the each time step. The WOA is described in detail in 

Chapter 3. The WOA is a swarm-based nature-inspired metaheuristic algorithm that mimics 

the hunting behavior of the humpback whales in the nature. The algorithm has favorable 

exploratory and explotation characteristics and can search large search spaces effectively. The 

algorithm mainly consists of three phases: encircling prey, bubble-net attacking method and 

searching for new prey. Encircling the prey represents the exploration phase of the algorithm, 

bubble-net attacking method represents the explotation phase of the algorithm and the 

searching for new preys represents the looking for new possible solution behavior of the 

algorithm.  

 

 

Figure 6.17. Main structure of the Artificial Neural Network used as the model 

 

Figure 6.18. The training and validation losses of the ANN 



 Main structure of the ANN used in this study is given in Figure 6.17. TDL means the 

tapped delay line which stores the previous and current time information of the ANN inputs, 

IW1.1 is the matrix of weights that connects the input state variable neurons to the hidden layer 

neurons, IW1,2 is the matrix of weights that connects the input signal neurons to the hidden 

layer neurons, IW2,1 is the matrix of weights that connects the hidden layer neurons to the 

output layer neurons, b1 is the hidden layer biases vector and b2 is the output layer biases 

vector. There is one time delay at the input neurons and the overall ANN consists of three 

layers, which are the input, hidden and output layers. The ANN has 30 neurons in the hidden 

layer, all of them have ReLU (Nair and Hinton, 2010) activation function and 9 neurons in the 

output layer, all of them have the linear activation function. The ANN is trained with 

Tensorflow library (Abadi et al., 2015) in an off-line manner with the ADAM (Kingma and 

Ba, 2015) optimization algorithm. The learning rate of the optimization is heuristically 

selected as 0.001. 9000 samples have been collected from the dynamic VCC model with 0.1 

second time intervals and 70% of the samples are utilized as in the training of the ANN and 

remaining 30% of the samples are utilized in the validation of the ANN. The batch size of the 

training samples are selected to be 256. The ANN is trained with nine state variables and four 

inputs. The state variables are the condenser and evaporator outlet enthalpy and entropy, 

compressor and EEV mass flow rate, compressor outlet enthalpy, compressor outlet entropy 

and EEV outlet entropy. The four inputs are evaporator and condenser secondary fluid mass 

flow rates, compressor motor speed and EEV opening rate. The ANN training and validation 

errors are depicted in Figure 6.18. At the end of this phase, the normalized training loss is 

found to be 0.012 and the normalized validation loss is found to be 0.014. Both values are 

assumed as acceptable. Moreover, validation of the three selected state variables, condenser 

outlet enthalpy, evaporator outlet enthalpy and compressor outlet enthalpy are depicted in 

Figure 6.19, Figure 6.20 and Figure 6.21, respectively. The highest absolute error is observed 

as 0.2 for the three cases. This error value is assumed to be acceptable and it has been 

concluded that the ANN fitted well.  

 



 

Figure 6.19. Condenser outlet enthalpy state variable validation 

 

 

Figure 6.20. Evaporator outlet enthalpy state variable validation 



 

Figure 6.21. Compressor outlet entropy state variable validation 

 

 The NNPC controller has been programmed and the simulation has been accomplished 

in the Java programming environment. The control horizon and the prediction horizon of the 

controller are respectively selected as 15 and 5. The number of iterations and the population 

size of the WOA algorithm are respectively selected as 1000 and 40. The objective weights in 

the NNPC algorithm are chosen as 0, 4x10-3, 10 and 10 for the controllers cooling load, first 

law efficiency, entropy generation and second law efficiency, respectively. The boundaries of 

the control input signals are depicted in Table 6.1. The slew rate limits of the control signals 

are depicted in Table 6.2. And the desired cooling load trajectory is shown in Figure 6.22.  

 

Figure 6.22. Desired cooling load trajectory 

 



Table 6.1. Control signal boundaries 

Input limits Minimum 

Value 

Maximum Value  

EEV opening (%) 7 9.5 

Compressor speed (RPM) 2000 2900 

Condenser secondary fluid mass flow rate 

(kg/sec) 

0.1 0.5 

Evaporator secondary fluid mass flow rate 

(kg/sec) 

0.1 0.5 

 

Table 6.2. Slew rate limits of the control signals 

Slew rate limits Minimum and Maximum limits in a time 

step 

EEV opening (%) ±0.05 

Compressor speed (RPM) ±10 

Condenser secondary fluid mass flow rate 

(kg/sec) 

±0.01 

Evaporator secondary fluid mass flow rate 

(kg/sec) 

±0.01 

    

 The Gouy-Stodola theorem is a phenomenon that is wortwhile to be analyzed in this 

case study. The theorem states that there is no difference between the minimizing the 

compressor power consumption and minimizing the cycle entropy generation if the reversible 

power consumption remains unchanged. In most cases the theorem holds valid, however in 

some cases it does not. It will be shown in this case study that it does not hold valid for this 

case. The theorem can be mathematically represented as follows, 

 �̇�𝒓𝒆𝒗𝒆𝒓𝒔𝒊𝒃𝒍𝒆 = �̇�𝒄𝒐𝒎𝒑 − �̇�𝒅𝒆𝒔𝒕,𝒕𝒐𝒕𝒂𝒍                                                 (6.101) 

  �̇�𝒓𝒆𝒗𝒆𝒓𝒔𝒊𝒃𝒍𝒆 = ∑ (�̇�𝒄𝒐𝒎𝒑𝒉𝒆𝒗𝒂𝒑,𝒄𝒐𝒎𝒑 − �̇�𝒗𝒂𝒍𝒗𝒉𝒆𝒗𝒂𝒑,𝒗𝒂𝒍𝒗)
𝑵𝒎𝒂𝒙𝒊𝒎𝒖𝒎
𝒊=𝟏 −

               ∑ �̇�𝒅𝒆𝒔𝒕,𝒕𝒐𝒕𝒂𝒍
𝑵𝒎𝒂𝒙𝒊𝒎𝒖𝒎
𝒊=𝟏                                               (6.102) 

 



  

Figure 6.23. Pairwise trajectory tracking performance comparison of the controllers  

 

Figure 6.24. Pairwise trajectory tracking performance comparison of the controllers  

 

Comparison of the trajectory tracking performances of the controllers are depicted in 

Figure 6.23 and Figure 6.24. It can be seen from the figures that most significant differences 

occur around 470 W stabilization point. The overshoots that occur at the beggining and end of 

the 470 W stabilization point have a major impact at the controller performances. The variation 

of the control signals over the simulation time are given in Figure 6.25 and Figure 6.26. It can 

be seen from the figures that the signals follow a similar trajectory to that of the cooling load 

and each combination of control signals produce a similar cooling load value. Moreover, 



trajectory of the control signals for the each controller is unique, this phenomenon is thought 

to be a major cause of performance differences between the controllers.  

 

Figure 6.25. Variations of the control signals for the each controller   

 

 

Figure 6.26. Variations of the control signals for the each controller   

 The exergy destruction rates of the each component of the VCC is given in Figure 6.27 

and Figure 6.28. As some papers in the literature suggests, the compressor is found to be the 

component with the highest exergy destruction rate. However, if the working bounds of the 

VCC is modified the exergy destruction rates of the other components can approach to that of 

the compressor. Most VCC in the real world employs a pump to circuit the fluids in the cycle. 

However, in this case study, exergy destruction rate of the pump is neglected due to having 

much lower exergy destruction rate than that of the other major components. Furthermore, the 



overshoot that occurs at the beginning of the 470 W stabilization point have much larger 

impact on the evaporator and condenser exergy destruction rates.  

 

Figure 6.27. The exergy destruction rates of the components 

 

 

Figure 6.28. The exergy destruction rates of the components 

 The compressor power consumption variation through the simulation time is given in 

Figure 6.27. By observing Figure 6.27, Figure 6.28 and Figure 6.29, it can be realized that the 

reversible compressor power consumption does not stay constant. Therefore, the Gouy-Stodola 

theorem does not hold for this case study. Total exergy destruction rates of the each 

component for the each controller are given in Table 6.3. The entropy generation controller 

achieved the lowest exergy destruction rates of the component except the evaporator. The 

second law efficiency controller is the second best in terms of the total exergy destruction rate 

after the entropy generation controller. The first law efficiency controller gives more desirable 

compressor power consumption value than that of the cooling load controller, which is 



expected. The exergy destruction rate of the EEV for the entropy generation controller is 0.8% 

lower than that of the cooling load controller. Furthermore, the exergy destruction rates of the  

compressor and condenser for the entropy generation controller  are respectively 0.2% and 

0.4% than that of the cooling load controller. 

  

Table 6.3. Exergy destruction rates of the each component for the each controller 

Exergy destruction 

rate by component 

(kJ) 

Cooling load 

controller  

First law 

controller  

Entropy generation 

controller  

Second law 

controller  

EEV 26.695 26.647 26.506 26.526 

Compressor 215.236 215.227 214.832 215.049 

Condenser 99.603 99.524 99.261 99.463 

Evaporator 16.991 16.870 17.048 17.051 

 

 Total exergy destruction and energy consumption rates for the controllers are given in 

Table 6.4. The best performer in the total exergy desruction rate category is the entropy 

generation controller with 357.649 W total exergy destruction. The second best in the same 

category is the second law efficiency controller with 358.090 W total exergy destruction. The 

entropy generation minimization controller concentrates on minimizing the total entropy 

generation and exergy destruction. However, the second law efficiency controller tries to find 

a comprimise between the work consumption and the exergy destruction. For this reason, the 

entropy generation controller gives better results than the second law efficiency controller in 

terms of total exergy destruction. Also, for the bot total exergy destruction and energy 

consumption cases the cooling load controller is the worst performer as expected. The COP 

and second law variations of the cycle for the each controller are depicted in 6.30. Avarage 

COP values through time simulation time for the controllers, cooling load, first law, entropy 

generation and second law are calculated as 2.96143, 2.96405, 2.97108 and 2.96642, 

respectively. And the avarage second law efficiency values through time simulation time for 

the controllers, cooling load, first law, entropy generation and second law are calculated as 

0.33976, 033962, 0.33983 and 0.34025, respectively. The second law efficiency controller 

performed the best in terms of avarage second law efficiency through the time as expected. 

 

 

 



 

Table 6.4. Total energy consumption and exergy destruction rates for the controllers 

 Cooling load 

controller 

First law 

controller 

Entropy generation 

controller 

Second law 

controller 

Total exergy 

destroyed (kJ) 
358.526 358.269 357.649 358.090 

Total energy 

consumed (kJ) 
542.815 542.331 540.810 541.847 

 

 

 

 

Figure 6.29. The compressor power consumption for the each controller 

 



 

Figure 6.30. The COP and second law efficieny variations for the each controller 

 

 

 

7. CONCLUSION 

 The HVAC systems is the primary energy consumption source of the countries 

nowadays. US Department of Energy found out that HVAC systems are responsible for 30% 

of the energy consumption of a building. Different approaches have been suggested by the 

researchers to reduce this large energy consumption. Dynamic analysis, design optimization 

and control are the main approaches that have been offered by the researchers to efficiently 

reduce the large energy consumption of the HVAC systems.  

 

 Dynamic analysis of a vapor compression cycle is studied as the first part of the thesis. 

The cycle is analyzed with two different refrigerants, namely R134a and R1234yf. R134a is a 

widely-used refrigerant in the HVAC systems, however it has high Global Warming Potential 

(GWP) and Ozone Depletion Potential (ODP) values. Recently, R1234yf has been suggested 

by the researchers as an alternative to the R134a. R1234yf has low GWP and ODP values. 

Finite Difference Method has been utilized for the modeling of the evaporator and condenser. 

Orifice equation is utilized for the modeling of the expansion valve. Modeling of the 

compressor has been accomplished in two parts. First, the refrigerant leaving the evaporator 

enters the compressor and interacts with the shell and other parts of the compressor. Thus heat 

exchange occurs between the refrigerant and parts of the compressor. Thereafter, the 



refrigerant reaches the compression room and isentropic compression occurs. The results 

showed that  R134a performs better than R1234yf in terms of the required compression power 

and overall cycle COP. Also, it has been observed that, after some time has been elapsed, the 

condenser and the evaporator output temperatures heats up and cools down, respectively and 

gets into the saturation curve and the COP of the cycle quickly drops to zero. Therefore, the 

cycle stops working.       

 

 Control of the HVAC systems is a more recent field for the energy efficiency of the 

HVAC systems. More and more research papers about the control of the HVAC systems are 

findig their place in the literature day by day. The control study of a vapor compression has 

been demonstrated in the sixth chapter of the thesis. Non-linear dynamic modeling of the 

vapor compression cycle (VCC) has been modeled as follows, the electronic expansion valve 

and the compressor is modeled with the static relationships because they have much faster 

evolving dynamics compared to that of the heat exchangers. The evaporator and condenser has 

been modeled with the lumped parameter Moving Boundary (MB) approach. The MB 

approach has some advantages and disadvantages compared to other modeling approaches in 

the literature. The MB approach requires less computational power, however, the results it has 

found may not be very accurate. The non-linear systems also have some advantages compared 

to their linear counterparts. Linearization process may eliminate some complex behaviors of 

the non-linear systems. The non-linearity of a system model is most of the time desired since 

almost all systems in the real world display non-linear behavior. The model verification of the 

system is accomplished with comparing the established model with a model developed in 

Aspen Plus Dynamics software with the same design spesifications. Thereafter, an artificial 

neural network is trained with the data obtained from the model. The outcomes of the model 

and the artificial neural network has been compared with each other and the highest absolute 

error between the outcomes is observed as 0.2. It has been concluded that 0.2 is an acceptable 

error value and the neural network is fitted well.  

 

 A Neural Network Predictive Controller (NNPC) has been developed for the control of 

the VCC. The Whale Optimization Algorithm (WOA) is utilized for the solution of the 

objective function to determine the next control signal for the each time step in the NNPC. The 

WOA is a swarm-based nature-inspired metaheuristic algorithm that mimics the hunting 

behavior of the humpback whales in the nature. The WOA has favorable exploration and 

explotation characteristics and can discover large search-spaces effectively. Four different 

controllers have been considered for this case study. The name of the controllers are the 

cooling load, first law efficiency, entropy generation and second law efficiency. Each 

controller take its name from the unique performance objective that it has to achieve except the 



cooling load controller which has only the common objective of the all four controllers, 

cooling load trajectory tracking. The results showed that the second law efficiency performed 

the best overall second law efficiency through the simulation time with 0.34025 efficiency 

value. And the entropy generation controller achieved the lowest total exergy destruction rate 

through the time with 0.2% lower than that of the cooling load controller. 

 

 The case studies analyzed in this thesis are theoretical studies. As a future work, 

controlling and dynamically analyzing an experimental VCC systems is expected. 

Furthermore, different types of non-linear control algorithms are expected to be applied to the 

VCC systems.    
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